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ABSTRACT 

An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a 

magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in 

porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help 

of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial 

differential equations. This system has been solved numerically using the finite difference scheme, in which a 

coordinate transformation is used to transform the semi-infinite physical space to a bounded computational 

domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction 

coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory 

sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and 

phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through 

imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found 

that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. 

However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of 

fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number. 
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INTRODUCTION 

Many fluids in industry and technology do not obey the Newton's law of viscosity and are usually classified 

as a non-Newtonian fluids. For example, blood, yogurt, ketchup, shampoo, polymer melts and greases 

exhibit complicated relationship between the shear stress and rate of strain. The boundary layer flow and 

heat transfer analysis of these fluids on a continuously moving surface has wide range of applications in 

engineering and industrial processes, for example, manufacturing of plastic sheets, artificial fibers and 

polymeric sheets, plastic foam processing, extrusion of polymer sheet from a die, heat materials travelling 

between a feed roll and many others. After the work of Sakiadis, many researchers studied the various 

aspects of flow and heat transfer characteristics of non-Newtonian fluids with/without magnetic field over a 

stretching surface. Some important contributions were due to Rajagopal et al., Dundapat and Gupta, 

McLeod and Rajagopal, Rollins and Vajravelu, Cortell, Nazer et al., Ishak et al., Hayat et al., Khan et al., 

Mohanty et al., Tripathy et al., Baag et al., Mishra et al. and many references therein. In above mentioned 

investigations the stretching velocity of sheet is linearly proportional to the distance along the flow 

direction. To the best of our knowledge, Wang was first who studied the viscous flow due to oscillatory 

stretching surface which is stretched back and forth in its own plane. Abbas et al. extended the problem of 

Wang by including the heat transfer effects in the presence of velocity and thermal slip conditions. In 

another attempt, Abbas et al. analyzed the boundary layer flow of a second grade fluid due to oscillatory 

stretching surface in the presence of magnetic field. The non-linear partial differential equation in was 

solved both analytically and numerically. For analytical treatment homotopy analysis method was applied 

while numerical solution was based on finite difference technique. Zheng et al. used homotopy analysis 

method to discuss Soret and Dufour effects in two-dimensional boundary layer flow of viscous fluid over an 

oscillatory stretching sheet. Ali et al. studied the effects of heat transfer in hydromagnetic flow of a Jeffrey 

fluid over an oscillatory stretching sheet by using homotopy analysis method and finite difference scheme. 

In another paper, Ali et al discussed the effects of heat source/sink and thermal radiation on unsteady flow 

of third grade fluid over an oscillatory stretching surface with convective boundary conditions. The effects 

of heat transfer on unsteady oblique stagnation-point flow of viscous fluid over an oscillating plate have 
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been discussed by Javed et al. Gul et al. discussed an unsteady MHD thin film flow of an Oldroyd-B fluid 

over an oscillating inclined belt by using optimal homotopyasymptoticmethod and 

homotopyperturbationmethod. In another attempt, Gul et al. discussed the effects of heat transfer in thin film 

flow of second grade fluid over a vertical oscillating belt. Recently, Sheikh et al. discussed thermophoresis 

and heat generation/absorption effects on unsteady flow of viscous fluid over an oscillatory stretching sheet. 

In this paper, we are interested to investigate hydromagnetic flow and heat transfer over a porous oscillating 

stretching sheet embedded in a porous medium. The rheological properties of the fluid are captured by using 

the constitutive equation of second grade fluid. This study extends the analysis of Abbas et al., where a rigid 

sheet is embedded in a clear medium and heat transfer analysis is lacking. The governing equations are 

transformed into the set of non-linear partial differential equations by employing appropriate 

transformations. A numerical solution based on finite difference method is obtained. The effects of flow 

parameters on fluid velocity, temperature field, skin friction coefficient and local Nusselt number are shown 

through graphs and tables. 

 

FLOW ANALYSIS 

We consider the unsteady and two-dimensional magnetohydrodynamics (MHD) flow of incompressible 

viscoelastic fluid (second grade fluid) through a porous medium over a porous oscillatory stretching sheet 

coinciding with plane  (see Fig 1). A magnetic field of strength B0 is applied in the direction 

perpendicular to the sheet. In our case, we are only interested in studying the effects of applied magnetic 

field on the fluid motion and not the vice versa. In this case the diffusion of magnetic field is important and 

thus the magnetic susceptibility is large which results in a small magnetic Reynolds number. In the small 

magnetic Reynolds number limit, the induced magnetic field and electric current can be neglected in 

comparison with the applied magnetic field and current density, respectively. In nutshell, our analysis is 

based on the assumption of small magnetic susceptibility and this assumption is not violated when strength 

of applied magnetic field is large. For detail the readers are referred to the book of Davidson.The 

temperature of the sheet is maintained at a constant value Tw and far away from the sheet the temperature of 

ambient fluid is T∞, where Tw > T∞. Under these assumptions along with the boundary layer approximations 

and neglecting viscous dissipation, the governing equations based on conservation of mass, momentum and 

energy in presence of body force are: 

 

 

where u and v are velocity component along  and  directions, respectively, ν is the kinematic 

viscosity, t is the time, ρ is the density, k0 is the normal stress coefficient, σ is electric conductivity, ϕ is 

porosity parameter, k is permeability of porous medium, cp is the specific heat at constant pressure, k1 is the 

thermal conductivity and T is the temperature of fluid. 

 
Fig 1. Geometry of the problem. 
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The flow is subjected to the following boundary conditions 

(4) 

 

(5) 

where vw is the wall mass transfer velocity with (vw > 0) corresponds to the mass suction velocity and 

(vw < 0) corresponds to the mass injection velocity, ω is the oscillation frequency and b is the stretching 

rate. The second condition in (5) is augmented condition since the flow is in unbounded domain. 

Let us introduce the following dimensionless variables 

 

 

 

(6) 

where subscript denotes differentiation with respect to the indicated variables. With the help of Eq (6), the 

continuity equation is satisfied identically and Eqs (2) and (3) give 
 

 
 

The boundary conditions (4) and (5) take the following form 
 

 
 

(7) 

(8) 

 

(9) 

(10) 

In above equations  is the dimensionless mass suction/injection parameter, K = bk0 / νρ in the 

non-dimensional visco-elastic parameter, S ≡ ω / b is the ratio of the oscillation frequency of the sheet to its 

stretching rate, Pr = μcp / k is the Prandtl number and  is a combined parameter due to 

magnetic field and the permeability of the porous medium. For non-conducting fluids, σ = 0 and as a 

result β = υϕ / kb corresponds to the classical permeability parameter and, by taking k → ∞, as a 

result corresponds to the classical Hartmann number. 

The physical quantities of interest are the skin-friction coefficient Cf and the local Nusselt number Nux, 

which are defined as 

 

(11) 

where τw and qw are the shear stress and heat flux at wall, respectively, which are defined as 
 

In view of Eqs (6) and (12), Eq (11) gives 

where  is the local Reynold number. 

(12) 

 

(13) 

DIRECT NUMERICAL SOLUTION OF THE PROBLEM 

In this section, we present the solution of nonlinear boundary value problem consisting of Eqs (7) and (8) 

with boundary conditions (9) and (10) using finite difference method. For this purpose, we use the 

coordinate transformation η = 1 / y+1 to transform the semi-infinite physical domain y ∈ [0, ∞) to finite 

calculation domain η ∈ [0,1]. Employing this transformation, we get 
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Using above transformations in (7) and (8), we have the following equations and boundary conditions 

 

 

 

 

 

(14) 

 

(15) 

(16) 

(17) 

Now we discretize Eqs (14) and (15) for L uniformly distributed discrete points in η = (η1, η2,……, η{L}) ∈ 
(0, 1) with a space grid size of Δη = 1 / (L + 1) and the time level t = (t1, t2,….). Hence the discrete 

values  and  at these grid point for time levels tn = nΔt (Δt is the 

time step size) can be numerically solved together with boundary conditions at η = η0 = 0 and η = η{L+1} = 1, 

(16) and (17), as the initial conditions are given. We start our simulations from a motionless velocity field 

and a uniform temperature distribution equal to temperature at infinity as 

(18) 

The oscillatory motion of the sheet with a temperature Tw(θ = 1) is suddenly set from τ = 0 at η= 1 (y = 0). 

We will see that this periodic motion will be immediately reached within first five period. We construct a 

semi-infinite time difference for f and θ, respectively, and make sure that only linear equations for the new 

time step (n + 1) need to be solved: 

 

 

 

 

 

 

 

(19) 

 

(20) 

It should be noted that other different choices of time differences are also possible. By means of the finite 

difference method we can obtain two systems of linear equations for  and  i = (1, 2,…., L) at 

the time step (n + 1), which can be solved, e.g. by the Guassian elimination. This method has already been 

implemented by several authors to simulate other similar flows. 

 

RESULTS AND DISCUSSION 

The system of non-linear partial differential equations consisting of Eqs (14) and (15) with boundary 

conditions (16) and (17) has been solved numerically using finite difference scheme to compute the velocity 

and temperature profiles. The transverse distributions and time-series for velocity and temperature fields in 

the first five periods τ ∈ [0, 10π] are plotted to analyze the influence of the various parameters, for example, 

the viscoelastic parameter K, the mass suction/injection parameter γ, the rate of frequency to stretching 

rate S, combined parameter of magnetic field and permeability of porous medium β and the Prandtl number 

Pr. Furthermore, we compute and show the values of the skin friction coefficient  and the local 

Nusselt number  for different parameters both graphically and in tabular form. Fig 2 shows the 

time-series of the velocity component f′ in the first five periods τ ∈ [0, 10π] for four different values of y 
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(which correspond to different distances from the sheet) for S = 2, β = 10, γ = 0.5 and K = 0.1. It is evident 

from Fig 2(A) that with the increase of distance from the oscillatory sheet, the amplitude of flow velocity 

decreases. It is further noted that far away from the surface, the amplitude of the flow motion is almost 

negligible. We observe a similar phenomenon from Fig 2(B) for K = 0.5. However, for K = 0.5 the 

amplitude of the flow motion is large in comparison with the corresponding amplitude for K = 0.1. 

Fig 2. Time-series of the velocity f′ at the four different distances from the sheet for the time period τ ɛ [0, 

10π] with S = 2, β = 10, γ = 0.5: (a) K = 0.1 and (b) K = 0.5. 

Fig 3A–3C illustrates the influence of the visco-elastic parameter K, the combined parameter of magnetic 

field and permeability of porous medium β and the mass suction/injection parameter γon the time-series of 

the velocity component f′ at a fixed distance y = 0.25 from the sheet, respectively. Fig 3(A) shows the effect 

of the visco-elastic parameter K on the time-series of the velocity profile f′ for S = 2, β = 10 and γ = 0.5. It is 

seen that the amplitude of the flow motion increases by increasing the value of K due to the increased 

effective viscosity and a phase shift occurs which increases with K. Fig 3(B) displays the effect of β on the 

time-series of the velocity component f′. It is found that the amplitude of the flow motion decreases with the 

increase of β. In fact, an increase in β corresponds to either an increase in strength of the applied magnetic 

field or a decrease in the permeability of the porous medium. In either case, the resistance to flow is 

increased and as a result of that the amplitude of flow velocity is suppressed. Fig 3(C) shows the time-series 

of velocity field f′ for different values of the mass suction/injection parameter γ. It is evident from this figure 

that the amplitude of the flow motion increases for the large values γ. It is also noted that a phase shift 

occurs which increases with the increase of γ. 
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Fig 3. Time-series of velocity f′ in the first five periods τ ɛ [0, 10π] at a fixed distance from the sheet, 

y = 0.25: (a) effects of visco-elastic parameter K with S = 2, β = 10 and γ = 0.5 (b) effects of β with 

S = 1, K = 0.1, γ = 0.5 and (c) effects of γ with S = 2, K = 0.2 and β = 10. 

Fig 4 depicts the variation of the visco-elastic parameter K on the transverse profile of the velocity f′ for 

different values of τ = 8.5π, 9π, 9.5π and 10π in the fifth period τ ∈ [8π, 10π] for which a periodic motion 

has been reached. It can be seen from Fig 4(A) that at τ = 8.5π, the velocity f′ decays from unity at the 

surface to zero far away from the surface. It is also found that at this instant of time, there is no oscillation in 

the velocity and it is an increasing function of the visco-elastic parameter K, i.e. by increasing the values 

of K, the boundary layer becomes thicker. Fig 4(B) presents the velocity component f′ at time instant τ = 

9π for various values of K. At this time instant, the velocity profile f′ is zero at the sheet (y = 0) and far away 

from the wall it again approaches to zero. It is also observed that near the surface, there exists some 

oscillations in the velocity field and the amplitude of the these oscillations increases with K. These 

oscillations in the transverse profile is an evidence of a phase shift in the visco-elastic fluid (K ≠ 0) against 

the viscous fluid (K = 0). Fig 4(C) and 4(D) display the velocity field f′ for others two time instants within 

the fifth periods. It is evident from Fig 4(C) and 4(D) that the flow in the whole flow domain is almost in 

phase with the sheet oscillations in the case of Newtonian fluid (K = 0), as shown from the solid lines 

displayed in Fig 4(A)–4(D). Furthermore, we can see from Fig 4 that the boundary layer thickness is 

increased by increasing the value of K. 

Fig 4. Transverse profiles of the velocity f′ for four different values of K for the fifth period τ ∈ [8π, 10π] for 

which a periodic velocity field has been reached: (a) τ = 8.5π (b) τ = 9π (c) τ = 9.5π and (d) τ = 10π with S = 

2, β = 10 and γ = 0.5. 
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Fig 5 illustrates the effect of the combined parameter β on the transverse profile of the velocity component f′ 

for τ = 8.5π, 9π, 9.5π and 10π with S = 1, γ = 2 and K = 0.2. It is evident from this figure that an increase in 

the Hartmann number or permeability parameter causes a reduction in the velocity field and the boundary 

layer thickness (Fig 5(A)). However, at τ = 9π (Fig 5(B)and τ = 10π (Fig 5(D)), there exist the oscillations 

with fairly small amplitudes in the transverse profiles of f′ near the wall. It is also noted that with increase in 

combined parameter β, the phase difference in f′ is almost invisible. 

Fig 5. Transverse profiles of the velocity f′ for four different values of β in the fifth period τ ∈ [8π, 10π] for 

which a periodic velocity field has been reached (a) τ = 8.5π (b) τ = 9π (c) τ = 9.5π and (d) τ = 10π with S = 

1, K = 0.2 and γ = 2. 

Fig 6 presents the variation in the transverse profile of the velocity field f′ for various values of mass 

suction/injection parameter γ at τ = 8.5π, 9π, 9.5π and 10π in the fifth period with S = 2, β= 10 and K = 0.1. 

The change in the velocity f′ for different values of γ at time τ = 8.5π can be seen from Fig 6(A). It is found 

that f′ = 1 at the sheet y = 0 and it approaches to zero far away from the sheet. Furthermore, the velocity 

profile is increased by increasing the value of the γ. The influence of γ on the velocity f′ at the time τ = 9π is 

presented in Fig 6(B). It is evident that at this time point the velocity takes zero value both at the wall and 

far away from the surface. The amplitude of oscillations near the plate decreases with increasing γ. The 

velocity fields for other two time points within the fifth are plotted in Fig 6(C) and 6(D) with the similar 

results as observed in Fig 6(A) and 6(B). 

Fig 7 shows the effects of the combined parameter β and the mass suction/injection parameter γ on the time- 

series of shear stress at the wall  for the first five periods τ ∈ [0,10π]. Fig 7(A) gives the variation of 

the combined parameter β on the skin-friction coefficient  It is evident that skin friction is oscillatory 

in nature and amplitude of oscillations increases with increasing β. Fig 7(B) displays the effects of γ on the 

skin-friction coefficient  with S = 1, β = 12 and K = 0.2. It is noted that the oscillation amplitude of 

the skin-friction coefficient  increases for large values of mass suction/injection parameter γ. 
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Fig 6. Transverses profile of the velocity f′ for four different values of γ in the fifth period τ ∈ [8π, 10π] for 

which a periodic velocity field has been reached: (a) τ = 8.5π, (b) τ = 9π (c) τ = 9.5π and (d) τ = 10π with S = 

2, K = 0.1 and β = 10. 
 

Fig 7. Time-series of the skin friction coefficient in the first five periods τ ∈ [8π, 10π]: (a) effects 

of β with K = 0.2, S = 1 and γ = 0.5 and (b) effects of γ with K = 0.2, S = 1 and β = 12. 

 

Fig 8 displays the effect of the Prandtl number Pr, viscoelastic parameter K, combined parameter of 

magnetic field and permeability of porous medium β and the mass suction/injection parameter γ on the 

transverse profile of the temperature θ for the time point τ = 8π. Fig 8(A) shows the variation of the 

transverse profile of the temperature distribution θ for different values of Pr at the time point τ = 8π. This 

figure shows that thermal boundary layer thickness decreases with increasing Prandtl number. In fact the 

Prandtl number represents the ratio of momentum diffusivity to thermal diffusivity; larger values of Prandtl 

number correspond to fluids with weaker thermal diffusivity. Thus thermal boundary layer thickness in 

fluids with greater Prandtl number is small in comparison with fluids having lower Prandtl number. In view 

of above fact, it may be concluded that Prandtl number play a key role in cooling process. In another words 

it may be used to control the thickness of momentum and thermal boundary layers. Fig 8(B) depicts the 

transverse profiles of temperature θ for different values of visco-elastic parameter K for the time point τ = 

8π. It is noticed from this figure that influence of visco-elastic parameter K is to decrease the temperature of 

the fluid. Fig 8(C) illustrates temperature profile θ for various values of β at the time point τ = 8π by keeping 

all other parameters fixed. It is observed that as we increase the values of β, both temperature θ and thermal 

boundary layer thickness are increased. The influence of the mass suction/injection parameter γ on the 

temperature field θ can be seen from Fig 8(D). It is found that from this figure that the temperature is a 

decreasing function of γ. The thermal boundary layer thickness also decreases by increasing γ. 
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Fig 8. Transverse profiles of the temperature field θ at the time point τ = 8π: (a) effects of Pr with K = 

0.2, γ = 0.5, S = 1, β = 10, (b) effects of K with γ = 1.5, S = 0.1, β = 12 and Pr = 1.5 and (c) effects β of 

with K = 0.2, S = 1, γ = 0.5 and Pr = 5 (d) effects of γ with K = 0.1, S = 2, β = 12 and Pr = 5. 

Fig 9 presents the results by varying Prandtl number Pr and the mass suction/injection parameter γ on the 

time-series of the temperature distribution θ and the local Nusselt number  in the first five 

periods τ ∈ [0, 10π] at a fixed distance y = 0.25 from the sheet. From Fig 9(A), it can be seen that with the 

increase of Prandtl number Pr, i.e., with decrease of thermal diffusivity or the increase of momentum 

diffusivity, the fluid temperature decreases. 

 

Fig 9. Time-series of the Nusselt number and temperature profile θ in the first five periods τ ∈ [0, 

10π] at a fixed distance from the sheet y = 0.25: (a) effects of Pr with K = 0.1, γ = 0.1, β = 12 and S = 1 and 

(b) effects of γ with K = 0.1, β = 12, and S = 2, Pr = 0.5. 

Fig 9(A) also shows that the magnitude of the local Nusselt number  is increased by increasing the 

values of Pr. Fig 9(B) illustrates the effects of the mass suction/injection parameter γ on the temperature 

profile θ and the local Nusselt number  in the first five periods τ ∈ [0, 10π]. It is noted from this 

figure that with the increase in the mass suction/injection parameter γ, the decrease in temperature θ with 

time becomes slower. Furthermore, a small oscillation, which is superimposed on the monotonically 

increasing temperature time-series, can be identified for large values of γ. It is further observed that local 

Nusselt number  increases with γ. A common observation from Fig 9(A) and 9(B) is that for τ = 0, 
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the local Nusselt number attains a maximum and then decreases monotonically because of the given initial 

conditions i.e., the temperature gradient at the sheet has its maximum initially which decreases with time. 

Table 1 shows the numerical values of the skin friction coefficient  for various values 

of S, K, β and γ at τ = 1.5π, 5.5π and 9.5π. It is evident from this table that the values of skin friction 

coefficient for the three different time points τ = 1.5π, τ = 5.5π and τ = 9.5π are almost identical. 

Furthermore, we can see that the periodic motion may be reached within the first period when the initial 

conditions are set up. However, the change of the skin friction coefficient from positive to negative by 

increasing the value of K indicates the large phase difference as Kincreases. It is also noted that the value of 

the skin friction coefficient  are increased as the relative frequency to the stretching rate S, combined 

parameter β and the mass suction/injection parameter γ are increased. Table 2 gives the numerical values of 

the local Nusselt number  for various values of the Prandtl number Pr, the viscoelastic 

parameter K, combined parameter of magnetic field and permeability of porous medium β and the mass 

suction/injection parameter γ at the four different times points τ = 2π, τ = 4π, τ = 6πand τ = 8π. It can be seen 

that the local Nusselt number increases by increasing the value of Pr, K and γ while it decreases by 

increasing β at all four times points τ = 2π, τ = 4π, τ = 6π and τ = 8π. Moreover, the values of local Nusselt 

number are also decrease when the time increases from τ = 2π to τ = 8π due to the decrease in the rate of 

heat transfer near the sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Numerical values of the skin-friction coefficient for different values of γ, M, S, K and λ at 

three different time points τ = 1.5π, 5.5π and 9.5π. 
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Table 2. Numerical values of the local Nusselt number  for different values of Pr, K, β and γ at 

four different time points τ = 2π, 4π, 6π and 8π when S = 3. 

 

CONCLUSION 

In present paper, we analyzed the flow and heat transfer of a visco-elastic fluid due to the oscillation of an 

infinite porous stretching sheet with magnetic field in a porous medium. A coordinate transformation is used 

to transform the semi-infinite flow domain to a finite computational domain and a suitable finite difference 

method is used to solve the governing partial differential equations. The time-series of the flow velocity, the 

temperature, the structure of the boundary layer near the plate for different values of involved parameters 

are graphically presented and discussed. The following observations may be made from the numerical 

results: 

 The flow field generated by flat sheet which is suddenly stretched periodically rapidly becomes 

periodic, at most after three or four periods. 

 The amplitude of velocity time-series is suppressed for large values of combined parameter. On the 

contrary, it increases with increasing the visco-elastic parameter. 

 The flow exists only within a boundary layer near the plate, whilst the heat can be transferred to an 

infinitely large distance with the increase of time. 

 The behaviour of temperature is monotonic with time rather than oscillatory. 

 The temperature and thermal boundary layer thickness increases with increasing combined 

parameter while converse trend is noted with increasing visco-elastic parameter and mass 

suction/injection parameter. 
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