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Abstract. Edge computing is an extension of cloud computing where physical servers are deployed closer 

to the users in order to reduce latency. Edge data centers face the challenge of serving a continuously 
increasing number of applications with a reduced capacity compared to traditional data center. This 
paper introduces ImpalaE, an agent based on Deep Reinforcement Learning that aims at optimizing 
the resource usage in edge data centers. First, it proposes modeling the problem as a Markov Decision 
Process, with two optimization objectives: reducing the number of physical servers used and maximize 
number of applications placed in the data center. Second, it introduces an agent based on Proximal 
Policy Optimization, for finding the optimal consolidation policy, and an asynchronous architecture 
with multiple workers-shared learner that enables for faster convergence, even with reduced amount of 
data. We show the potential in a simulated edge data center scenario with different VM sizes based on 
Microsoft Azure real traces, considering CPU, memory, disk and network requirements. Experiments 
show that ImpalaE effectively increases the number of VMs that can be placed per episode and that it 
quickly converges to an optimal policy.1. 
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1. Introduction 

Cloud Computing providers have popularized and quickly replaced private data centers. Many 
businesses, government organizations and research centers rely on external clouds to run their 
workloads. However, Cloud data centers are usually located far away from the end-user and 
the perceived latency might not be up to the standard. In recent years, the Edge Computing 
paradigm has augmented Cloud capabilities by placing computing facilities and services close to 
end users. Thus, Edge data centers are able to provide low latency and mobility to delay-sensitive 
applications. According to a Markov Growth study [10], Edge Computing was valued at USD 
1.93 Billion in 2018 and is projected to reach USD 10.96 Billion by 2026. With this high growth 
in revenue, it is clear the increased interest in this services. 

The Edge computing platform is expected to deliver consistent performance despite the rapid 
increase of application demand, specially coming from Internet-of-Things applications, such us 
self-sufficient vehicles producing data from their various cameras, radar or accelemerometers. 
The new challenge for edge service providers is to perform efficient resource management of 

their edge data centers with reduced computation and storage capabilities [6]. In particular, 
providers will look for automated solutions that can adapt to the varying demand and diverse 
workloads. 

Reinforcement Learning (RL) is a family of self-adaptive algorithms that has been successfully 
applied to multiple domains. From the popular AlphaGo [16] for playing the game of Go, to 
autonomous driving, drug discovery, personalized recommendations and optimizing chemical 
reactions. RL has also been applied to for cloud resource optimization, both horizontal and 
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vertical scalability [2, 19, 20]. Similarly, RL has the potential to provide and efficient and 
automated solution to the management of resource at the Edge. 

 

2. Related work 

Edge computing has received increasing attention in recent years. A common use case scenario 
is the off-loading of certain requests to different Edge data centers. Liu et al. [8] focus on the 

task scheduling problem and proposed an RL-based scheduling solution and successfully offioad 
certain tasks to other data centers. Some authors have proposed DRL-based solutions for the 
offioading of VMs [14]. However, computation offioading might lead to unbalancing issues, as 

some edge data centers in the region could be overloaded while some others are in idle state [1]. 
Unbalanced data centers lead to performance degradation and wasted resources. One ap- 
proach would be to spread the load equally among the difference edge data centers. Puthal 
et al. [13] take this approach and propose a solution based on Bread-First-Search to keep the 
application load equally distributed. However, edge data centers are characterized from scarce 
resources compared to traditional servers and a load balancing approach will not maximize the 

number of applications that can be served. 
There are clashing objectives between the end-user and the service provider. The end-user 

expects guaranteed application performance, while the provider wants to maximize its revenue 
by increasing the number serviced applications. In order to meet both end-user and provider’s 
expectation, it seems reasonable to define the overall objective as a consolidation problem: 
placing as many requests as possible using the minimal capacity, always subject to resource 
constraints. With this goal in mind, some authors have focused on the execution of tasks on 
edge data centers [8, 21]. Zhu et al. [21] successfully introduce two approximation scheduling 
algorithms focused on minimizing energy consumption and reducing the overall task execution 
delay. 

As stated by Khan et al. [6], edge data centers can benefit from the use of Virtual Machines 
to co-allocate multiple applications in the same physical server. Tao et al. [17] gather a list of 
proposed solutions that handle the VM placement on edge data centers. Proposed optimization 
methods range from Mixed-Linear Non-Linear Programming [4, 12] to Particle Swarm Opti- 
mization [7]. However, there seems to be a lack of solutions exploring the potential of RL for 
optimal VM placement in edge data centers, aiming at minimizing resource wastage. 

To the best of our knowledge, this is the first attempt to explore the application of policy- 
gradient RL methods to achieve efficient resource management in edge data centers. This paper 
introduces an agent (named ImpalaE that uses policy-gradient method to find the optimal place- 
ment policy and a distributed architecture that enables fast training. The resource management 
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problem is formulated with a bi-objective function that tries to (1) reduce the number of physical 
servers utilized and (2) maximize the number of applications that can be placed in the edge data 
center. 

 

3. Background: Policy-Based Reinforcement Learning 

The basic elements in an RL problem are the agent and the environment. The agent continuously 
interacts with the environment, observes the current state and decides the best action to take. 
After some time, the agent will observe the reward obtained after applying that action. The goal 

is to learn an optimal policy ��(�|�) that maps each state with its optimal action. 

3.1. Vanilla Policy Gradient (PG) 

There are different approaches to learn the optimal policy. As the name suggests, Policy-based 

algorithms directly learn the policy without an intermediary function. The policy ��(�|�) is 
approximated with deep neural network that has a vector of policy parameters �. The goal is to 
adjust the values of these parameters, such that the policy maximizes the reward obtained from 
the environment. 

Policy gradient methods rely on applying stochastic gradient descent as an iterative process. 
At each step, the algorithm estimates the gradient of some estimated scalar performance objective 
� (��) and updates the policy parameters �: 

��+1 = �� + �∇�� (��) (1) 

The gradient of � (��) for the Vanilla Policy Gradient can be calculated as follows: 

∇�� (��) =  E 
∑︁ 

∇� log ��(��|��)��� (��, ��), (2) 
� ∼�� 

�=0 

where � is an episode, that is a sequence of states and actions, e.g. a pre-defined sequence of 
requests and their corresponding placements in the edge data center; and E denotes calculating 
average over a batch of samples. 

The main drawback in Vanilla PG is the high gradient variance, that will hinder the con- 
vergence to an optimal policy. The advantage function ��� included in the gradient function 
helps in reducing such variance. Without going deep into the details, the advantage function 
evaluates how good an action is compared to the average action for a specific state. 

 

3.2. Proximal Policy Optimization (PPO) 

PPO [15] aims to optimize the gradient update taken at each step, ensuring that it minimizes 
the objective function, while ensuring that the difference to the previous policy is relatively 
small. Too big of an update might cause a divergence from the optimal policy. PPO imposes a 
constraint to the policy gradient updates as follows: 

� (�) = ����� (�) = E� [���(��(�)��, ����(��(�), 1 − �, 1 + �)��)] (3) 
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There are two main modifications with respect to the vanilla PG method. The first one 

is � =  �� (��|��)  
, which computes a ratio between the current policy (after update) and 

����� 
(��|��) 

the older policy (just before the update). Additionally, PPO relies on a clipping function 

����(��(�), 1 − �, 1 + �) that keep the value or �� between certain range defined by 1 − � and 
1 + �. 

PPO with Clipping is used as the core agent for ImpalaE. The full logic is depicted in Algorithm 
1: 

Algorithm 1: PPO with clipping 

Input: initial policy parameters �0, clipping threshold � 

for 0,1,2, . . . do do 
Collect set of partial trajectories (episodes) � on policy � = �(�) 
Estimate advantages �� using any advantage estimation algorithm Update 
the policy by maximizing the policy the PPO-Clip objective: 

��+1 = arg max� ����� (��), typically, by taking � steps of minibatch stochastic gradient 
descent with Adam optimization 

end 

3.3. Importance Weighted Actor-Learner Architectures (IMPALA) 

IMPALA [3] is a state-of-the-art algorithm produced by DeepMind. It uses the vanilla Policy 
Gradient at its core, but also introduces two significant improvements: a distributed architecture, 
and a correction algorithm V-trace. First, it introduces a highly-scalable architecture that relies 
on a single (or multiple) learner and multiple workers (see figure 1. In traditional RL approaches 
[11], each worker updates its local model parameters before each episode and communicates 
gradients to the main learner. IMPALA proposes a loosely coupled architecture where each 
worker focuses on collecting trajectories of experience (states, action, rewards). Then, the 
learner asynchronously samples batches of experiences from the workers, computes the policy 
gradients and updates the current model. This architecture enables the learner to be accelerated 
by a GPU and to distribute the workers across different nodes and collect experience on different 
domains (e.g. independent edge data centers). 

The high scalability of the IMPALA architecture comes at a cost. Each worker interacts with 
its environment based on a policy that is slightly older than the main learner’s policy, since 
the learner broadcasts the updated weights in a period and asynchronous manner. In order to 
address this divergence, Espeholt et al. [3] introduce a correction algorithm called V-trace that 
readjusts the value function � (�) for each state and account for the lag in each action decision. 

 

4. ImpalaE: efficient resource management at the Edge 

This paper introduces ImpalaE, an agent designed to address the specific resource management 
needs from Edge Computing paradigm. The agent specializes in edge data centers that use 
Virtual Machines as an abstraction layer to place applications. It relies on the use of Policy 
Gradient Reinforcement Learning to learn and adapt to different VM request arrival patterns and 
dynamic resource usage. By leveraging a combination of PPO with an asynchronous architecture, 
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∑︁ 

it quickly finds the optimal placement policy that squeezes the maximum performance out of 
the reduced capacity of an edge data center. As a first step, the Edge computing environment is 
formulated to be suitable for an RL-based agent. 

 

4.1. Environment modeling 

The scenario is one or more edge data centers composed of � physical servers. Each physical 
servers has a given capacity for a set of resources, �. The agent has to learn the optimal 
policy � that matches each incoming request, expressed as a VM type with specific resource 
requirements, with the best physical server available. The overall goal is to maximize the 
number of requests that can be served given the current capacity. With this goal in mind, the 
resource management problem on edge data centers can be formulated as a Markov Decision 
Process (MDP) as follows: 

State space: The state � at time � is defined as the current resource usage in the data center, 
together with the request received at time �. The resource usage of each physical server is 
expressed as a normalized variable, ranged [0, 1], for each of the resources considered �. 

Additionally, each physical server has a binary variable associated �, which indicates if it is 
active (it has any load assigned to it) or not. Overall, the resource usage of the data center is a 
multi-dimensional vector [�, � + 1]. Each request � corresponds to a VM type, defined a set of 

� resource requirements that need to be satisfied. For the current case, we will consider � = 4 
resources, namely CPU, memory, disk and network capacity. 

Action space: The action space � is the set of � physical servers available in the data center. 
At time �, �� is defined as the subset of servers where the current request � could be placed, 
that is, never exceeding the capacity of the machine: 

 

�� = {� ∈ �| 
� 

�=1 

 

��,� 

 
+ �� ≤ 1} (4) 

where ��,� is the current utilization value for physical server � and resource � and �� is the 
capacity requested for resource �. 

Reward definition: The primary goal in the edge data center is to maximize the number of 
requests that can be served with the available capacity. The reward function � is defined with 
this goal in mind and it is composed of two objectives. The first objective �1 accounts for the 

amount of unused resources in the data center, normalized by the total capacity, � * �: 

 
�1 = − 

� 
�=1 �� * �� 

 
(5) 

� * � 

where �� is the total amount of free capacity across � resources for physical server �. The 
reward only accounts for free resources in active physical servers, defined with �� = 1. 

The second part of the reward function directly accounts for the number of requests remaining 
to be placed in the current episode: 

 

�2 = − 
� − � 

� 
(6) 

The final reward function is simply the linear combination of �1 and �2 with equal weights. 

∑︀ 
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Figure 1: Architecture for ImpalaE. 
 
 

4.2. Agent architecture 

The proposed agent is based on the asynchronous architecture introduced by [3], from which it 
takes its name, ImpalaE. It consists of a main learner and one or more workers (see figure 1). Each 
worker interacts with the environment using their local copy of the network (only performing 
inference) and store (state, action, reward) samples. The main learner asynchronously samples 
batches from each of the workers and uses them to update the central network. After that, the 
learner broadcasts the network updated new weights to each of the learners in an asynchronous 
manner. This architecture enables for faster, parallel collection of environment info, which in 
turn leads for a quick convergence toward the optimal policy. 

The learner is based on PPO algorithm with clipping (see Algorithm 1) for finding the optimal 
policy, that is, the best placement of each incoming VM request to the edge data center. The 
network model uses a shared architecture for the policy and the value function. It consists of feed- 
forward neural network with TanH activation function. In order to speed up the convergence, 
the learner makes use of a buffer replay. This buffer stores all the instances composed of 
(�����, ������, ������, ����_�����). Periodically, the learner samples ����ℎ_���� instances sampled 

from the buffer to perform a gradient update in the policy network. Finally, the learner 
leverages V-trace[3], a correction algorithm that fixes discrepancies in the instances as a result 
of the asynchronous architecture. Table 1 contains a summary of the configuration used in the 
experimental evaluation: 

 

5. Experimental evaluation 

The following set of experiments are defined to evaluate the general performance of ImpalaE, 
compared against other policy-gradient methods from the state-of-art, and also the convergence 
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Table 1 
Parameter configuration for ImpalaE. 

Type Parameter Symbol Value 

Scenario 
Number of physical servers 
Number of resources 
Number of actions 

� 

� 

|�| 

500 
4 
� 

 
ImpalaE 

Learning rate 
Train Batch size 
Optimization algorithm 
Clipping parameter 
Number of workers 

� 0.005 
500 
Adam 
0.4 
2 

 
Network Model 

Input layer 
Hidden layer 1 
Hidden layer 2 
Output layer 

 (� + 1)*(� + 1) 
1024 
1024 
� 

 
and scalability of the agent architecture. 

Testing environment: A simulated environment of an edge data center with certain 

number of homogeneous physical servers (same capacity). Each physical server and VM request 
is defined in terms of their CPU, memory, network and disk requirements. The resource 
specification is normalized between 0 and 1 (required by the model input). The experiments 
are based on real-world traces collected from Microsoft Azure data center [5, 18] (in particular, 
15 VM types assigned to a machine identified with id 0). All algorithms are implemented in 
Python v3.8 and models are implemented using Tensorflow v2.5.0, and trained on a GPU. The 
hardware for the experiments is a machine with Intel Cor i7-10510U, 16GB of RAM, NVIDIA 
GeForce MX330. 

Baseline methods: ImpalaE is compared against one heuristic method, Round Robin, and 
two other state-of-the-art RL algorithms: (vanilla) Policy Gradient (PG) and Proximal Policy 
Optimization (PPO). 

 

5.1. Convergence and performance evaluation 

The main goal of ImpalaE is to quickly converge to the optimal placement policy, the one that 
optimizes resource usage and maximises the number of requests that can be accommodated in 
the edge data center. In the first scenario, the data center is composed of 500 physical servers and 
has enough capacity to serve an episode consisting of 1000 VM requests. Requests are randomly 
drawn from a set of 14 VM types extracted from Azure data center traces (machineID 0). For 
fairness of results, the same network architecture is used for ImpalaE, PPO and PG. The network 
contains 2 hidden layers, with 1024 units each. When the agent architecture allows, two workers 
are used in the training process. 

Figure 2 shows the convergence results for ImpalaE, PPO, PG and Round Robin. In less than 
30 iterations, ImpalaE quickly converges to the optimal policy. In contrast, both PG and PPO 
achieve a sub-optimal policy (lower than the heuristic-based agent, Round Robin), with lower 
mean reward per episode. PG takes a high number of iterations to converge. 
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Figure 2: Training results for ImpalaE, PPO and PG. 

 
 

 

 

 

Figure 3: Mean percentage of placed requests per episode. 

 

 

The second scenario is designed to stress the agent ability to make optimal placement decision 
in cases of high occupancy. The data center consists again of 500 physical servers, but in this 
case, 2000 VM requests have to be placed in each episode. The data center does not have enough 
capacity to serve all of them. Figure 3 shows the percentage of placed requests, calculated as 
the mean of the last 5 iterations. The heuristic-based agent (Round Robin) only manages to 
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accommodate 25% of the requests. This is inherent to the nature of Round Robin algorithm, that 
tries to spread out the load across different nodes. This naturally leads to resource fragmentation 
and limits the amount of resources that can be placed in a data center. In contrast, RL-based 
agents quickly learn a policy that tries to maximize the resource utilization. Both state-of-the-art 
baseline methods, PPO and PG, achieve a higher rate of successful placements in contrast to the 
heuristic agent, 89% and 91% respectively. Thanks to its parallel architecture, ImpalaE agent is 
able to explore more scenarios in a shorter amount of time and thus, further train the policy to 
score the highest placement rate, 94% of the 2000 VM requests within the same edge data center. 

 

5.2. Agent scalability 

The single learner-multiple worker architecture makes the proposed agent highly scalable, 
which in turns allows for faster convergence. The next experiment explores the impact of the 
number of workers in the training process. The scenario uses 500 physical servers and 1000 
VM requests per episode, and compares the performance of PPO and ImpalaE (see figure 4). As 
expected, PPO shows the slowest convergence rate, easily surpassed by ImpalaE with a single 
worker. At its core, ImpalaE relies on several workers interacting with the environment and 
gathering as much information as possible, that is, they explore different data center scenarios 
and placement decisions and record the outcome of such decision (did it improved the request 
acceptance?). For this reason, increasing the number of works naturally improves the placement 
policy (higher reward) and leads to an earlier convergence. In this particular case, ImpalaE 
achieves the best results with 4 works. However, it is interesting to note that an additional 
worker (up to 5) actually achieves a slightly worse policy, which might be due to high variance 
in the sampling. We leave for future work the deeper analysis of the algorithm stability during 
training. 

A well-known drawback of RL-based agents is their extremely long times (hours) needed to 
converge to an optimal policy, which makes it unfeasible to deploy such agent in a production 
environment. This experiment analyses the overall training time of the agent for a data center 
composed of 500 physical servers. As figure 5 shows, the baseline method, PPO, requires around 
37 minutes of total training time. In contrast, the parallel architecture of ImpalaE allows it to 
further reduce the training time to only 4.4 minutes with 4 workers. This is especially appealing 
feature for highly dynamic environments, where the workload request patterns and resource 
usage change abruptly. 

 

6. Conclusions and future work 

Edge computing was born as an extension of widely used Cloud computing, with the differences 
that computing resources are located closer to the end-user and this is imperative for latency- 
critical applications. Edge computing providers face an additional challenge when making an 
optimal resource management of their data centers with reduced capacity, while trying to meet 
the client demand. This paper introduces ImpalaE, an agent based on Deep Reinforcement 
Learning, specially designed to optimize resource usage at the edge. It leverages Proximal Policy 
Optimization for finding the best placement policy for applications in edge data centers. It is 
also based on the IMPALA architecture, an asynchronous paradigm composed of one learner 
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Figure 4: Mean reward per episode during training time. 
 
 

 

 
 

Figure 5: Convergence time. 

 

 

and multiple parallel workers that speed up the convergence, even with reduced amount of 
data. The paper also introduces modeling of the edge computing environment as a Markov 
Decision Process with a bi-objective reward function specially designed to squeeze maximum 
performance. The validity of ImpalaE is assessed in a simulated environment considering VM 
requests based on real Microsoft Azure traces and considering CPU, memory, disk and network 
requirements. 

The full potential of IMPALA architecture is yet to be explored. It has demonstrated higher 
performance with less data and ability to transfer information among tasks [3]. One natural 
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extension would be to expand ImpalaE to multiple data centers, that learn an optimal policy 
per data center, but also benefit from asynchronously exchanging information among different 
agents. However, there is also a need for deeper experimentation about the training stability 
for larger number of workers. 

The current environment model takes into account the network bandwidth needs of each 
application. However, it could be further extended to consider the communication pattern 
among different nodes or VMs within the application. The reward function could be augmented 
with other objectives, such us application latency experienced by end-user or the data center 
energy utilization. 
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