
 

Cache Coherence Protocols in Distributed Systems 
 

Abstract 

Distributed systems performance is affected significantly by cache coherence protocols due to their role in data consistency maintaining. 

Also, cache coherent protocols have a great task for keeping the interconnection of caches in a multiprocessor environment. Moreover, 

the overall performance of distributed shared memory multiprocessor system is influenced by the used cache coherence protocol type. 

The major challenge of shared memory devices is to maintain the cache coherently. Therefore, in past years many contributions have 

been presented to address the cache issues and to improve the performance of distributed systems. This paper reviews in a systematic way 

a number of methods used for the cache-coherent protocols in a distributed system. 

 

Keywords: Cache coherence protocol, Distributed System, Multiprocessor system, Shared memory multiprocessor system. 

 

I. INTRODUCTION 

The separated design of distributed systems from the core 
network makes the worst-case assumptions [1]. However, in 
deploying them through distributor applications today in data 
centres, it is possible to participate in the design of distributed 
systems with their own network layer but it offers essential 
benefits [2], [3]. The displaying operating systems problem in 
distributed systems suggests new solutions to current problems 
[4], [5]. We can alleviate the problem by maintaining a table of 
trusted contact canters in each operating system and making all 
IPI processors verify sources [6], [7]. Distributed systems 
permit several clients from accessing a common computing 
source thus delivers resource sharing [8]–[10]. Air traffic 
control, online railway reservation systems, and internet 
banking are examples of such distributed computing [11]–[13]. 

One of the most commonly used parallel programming 
models is shared memory due to the advantages of global 
address space [14], [15]. The major challenge of shared 
memory devices is to maintain the cache coherent, typically 
addressed by the hardware cache coherent protocols [16]. 
coherent failure occurs when updating the local node cache 
copy and revoking all shared copies to keep the data coherent 
[17], [18]. 

The most commonly used cache coherence protocols are SI, 
MI, MSI, MESI, MOSI, and MOESI. The first one where 

 

releasing storage is not allowed by the cores. The second 
protocol (MI) considered the simplest one in use to maintain 
cache coherence in MC / MP systems. The third one the MSI 
protocol is the simplest of protocols based on deactivation. 
MESI which supports both write cache 1 and 2. MOESI 
protocol where it reduces the number of bus messages [19], 
[20]. 

The main objective of this article is to review the last 
researches on the cache coherence protocols in distributed 
system. In addition, to systematically summarize the numerous 
works which have achieved in the last few years ago. Section 2 
provide details explanation of the cache coherence protocols. 
Section 3 gives a literature review about the cache coherence 
protocol in a distributed system and presents a comparative 
analysis of the surveyed methods. Section 4 is a discussion of 
the surveyed methods in the cache coherence protocols of a 
distributed system. The conclusion of the study is presented in 
section 5. 

II. CACHE COHERENCE PROTOCOLS 

A cache is a small sized and high-speed memory that caches 
data from some of the frequently used addresses in the main 
memory. There are two categories of the cache coherence 
systems (directory-based and snoopy-based). The directory- 
based schemas maintain a central directory to store the memory 
block sharing state. In snoopy-based schemas to maintain 

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:15



 

 

 

 

consistent data, the request broadcasting and activity 
monitoring of the memory bus is done by the cache controller 
[16]. 

A cache coherent protocol is one way to maintain the 
interconnection of caches in a multiprocessor environment 
using hardwar [18]. Cache consistency issues cause another 
type of "cache error" coherence loss plus binding, conflict, and 
capacity errors. The coherence failure occurs in case of 
updating the local node cache copy and canceling all shared 
copies to maintain data consistency. The most common types 
of cache coherent protocols are SI, MI, MSI, MESI, MOSI, 
MEOSI, and MESIF [20]. 

A. Shared-Invalid (SI) 

The SI is a parsed version of the MSI protocol, where 
releasing storage is not allowed by the cores. The system that 
has n cores, the correct general state allows the system to store 
cache blocks in any m centers in I and block the cache in other 
n - m centers in the S state. The entire space of the SI protocol 
state with cores n is hypercube1 dimensions [20]. 

B. Modified-Invalid (MI) 

The MI protocol considered the simplest one in use to 
maintain cache coherence in MC / MP systems. This protocol 
uses two conditions: Modify (M) and Invalid (I). It has the least 
hardware complexity among all coherence protocols. 
Reading/writing in one node invalidates the data in another 
node if the same data exists [17]. 

C. Modified -Shared-Invalid (MSI) 

The MSI protocol is the simplest of protocols based on 
deactivation. It consists of only 3 cases modified (M), shared 
(S), and invalid (I). Fig. 1 illustrates the MSI protocol diagram. 
The invalid case is where the local cache copy does not contain 
a valid copy. The shared state means that the local cache and 
other caches may contain a valid copy in relation to the main 
memory [19]. 

 

Fig 1: State diagram of the MSI protocol [21] 

D. Modified-Exclusive-Shared-Invalid (MESI) 

The MESI protocol considered one of the most commonly 
used cache coherence protocols, which supports both write 
cache 1 and 2 [19]. This protocol is an advance of the MSI 
protocol that has added a special case (E) to reduce the number 
of mobile carriers sending the incorrect fix to the rate. The 
exclusive case is where the local cache contains a valid copy 
[16]. Fig. 2 illustrates the state transition of the MESI protocol. 

 

Fig 2: State diagram of the MESI protocol [22] 

 

 

E. Modified-Owned-Shared-Invalid (MOSI) 

In the MOSI, the transport node transfers the converted data 
to a read requestor without rewriting it. In the requesting node 
and the responding node, the cache line state is updated to S and 
O respectively. The status O permits the dirty copy to be shared 
between various nodes. It is omitted via combining the states 
of the MESI and MOSI in the Modified-Owned-Exclusive- 
Shared-Invalid protocol (MOESI) [23]. 

F. Modified-Owned-Exclusive-Shared-Invalid (MOESI) 

The additional extension of the MESI protocol is the 
MOESI protocol where it minimizes the number of bus 
messages sent for an invalid transition to a rate while still 
allowing multiple participants. This protocol has another state 
called Owned that has a valid copy of the local cache [19]. 
Fig. 3 illustrates the transition diagram of the MOESI case. 

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:16



 

 

 

 
 

 

Fig 3: State diagram of the MOESI protocol [22] 

 

III. LITERATURE REVIEW 

Bernard et. al. [24] proposed a native protocol for network 
cache correlation (IN-CC) with linear scalability. Moreover, 
expand the protocol with several improvements: mechanisms 
for blocking both message routing and resource reservation 
cycles, supporting MOESI instances and accelerating data 
transfers by dividing the network into two parallel segments. 
Cache integration in shared memory greatly simplifies its 
programmability but faces scalability and cost problems. 
Finally, they recognize the implementation of the promote 
protocol on FPGA for the purpose of performance 
measurements and validation. 

Quang and Do [25] focused on exploring MOESI, a well- 
defined cache coherence protocol common in CMP. The cause 
of CMP performance is strongly influenced by the extent to 
which data is fetched from the memory system. Our experience 
is based on the Splash-2 standard, which is widely used in every 
publication related to CMP design. The results of the 
experiment show that by rearranging the range of addresses of 
memory banks, the ratio of access to L2 can be improved to 
13.5%. 

Almakdi et al. [26] implemented snoopy and directory 
protocols and measured the entry rate, mandatory error rate, 
amplitude loss rate and coherent strength for each one. Solved 
the problem of the specific time value of data time based on 
processor instructions executed each clock cycle with 
corresponding memory access. Additionally, they explained 
how each map is affected by block size and cache size. The 
objectives are to explore the characteristics of consistency 

mechanisms that include custom caches by searching for two 
common types of mechanisms. 

Team et al. [27] implemented a robust MESI protocol 
designed specifically for Verilog directory-based caching 
protocol. The increasing complexity of the coherence protocol 
and network on a chip has become a major challenge for pre- 
silicon verification. Adding Inferno to the verification process 
can reduce the time and effort that verification engineers need 
to detect and locate potential design errors. Also, summarize 
user experience with Inferno and offer suggestions to both 
Inferno users and developers. 

Aghaei et al. [28] evaluated the latency and power of a 
multiprocessor system with several cache coherence protocols. 
They used the GEM5 simulation for implementing their system. 
The access latency increased because of the large number of 
processors with shared memory. Moreover, five injection rates 
(0.1, 0.2, 0.3, 0.4 and 0.5) were depended for traffic generation. 
The experimental based on measuring the characters of power, 
latency, and empirical result. The experimental result presented 
that the maximum power consumption and latency was 
performed by MOESI-CMP. 

Kehagias and Raptis [23] purposed to teach and learn cache 
cohesion in advanced computer engineering courses. The 
problem of maintaining data consistency between memory and 
all caches is known as a cache cohesion problem. This work is 
a continuation of the previous desktop application for the MESI 
cache cohesion simulator. Simulation provides an interactive 
communication with the students; it is implemented in Visual 
Studio IDE and Unity Engine by using scripts in C#. 

Kehagias [29] developed two simulation tools that are 
supported to the learning and teaching of the MESI cache 
coherence protocol and dynamic scheduling using the 
Tomasulo algorithm. Furthermore, introduced this simulation 
and assess its impact on the learning process. This simulation 
will evaluate its effect on the learning process. Results are 
presented in terms of quality and quantity. 

Smelt [30] illustrated Intel x86 CPU networking from bus 
to point-to-point interfaces, was increasingly evident. The 
underlying causes of energy efficiency and their impact on the 
development of microspheres. The researcher examined the 
performance, power, and space scalability on some processors 
by using the Snooper x86 PC architecture emulator. The 
scalability between the bus topology and loops (NoC) and 
different networks (NoC) in Haswell's simulated architecture is 
compared by Snooper results, which comprise the power and 
region model by McPAT. 

Eltaras et al. [31] proposed a novel scheme control to 
enhance the performance of a cache coherent network based on 
the adaptive routing algorithms. They aimed to reuse virtual 
channels among short and long packet. Moreover, the authors 
split the long packets into several chunks and allocated virtual 
channels to chunk and the entire packet. The experiment results 
illustrated that the performance of the routing algorithms 
increased and outperformed routing function in terms of 
flexibility. Besides, the presented scheme achieved better 
performance compared to other works regarding the number of 
resources. 

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:17



 

 

 

 

Prabhu et al. [32] suggested work encompass achieving 
multiple channels by using an independent 2D network 
topology based on the ACE protocol specification. The 
objective of the proposed work is to design a multi-core 
processor linking system after selecting the appropriate routing 
algorithm, flow control protocol, and precise router 
architecture. 

Deb et al. [33] proposed an energy-efficient caching 
strategy for blocks bringing ECAP. An effective prefetching 
strategy may generate more traffic, which increases energy 
consumption and network congestion. It uses a lower set of 
near-tile cache that runs light applications such as memories of 
the default tile cache that runs high applications in order to 
place the prefetching blocks. The ECAP minimizes the link 
power in NoC, the router, and AMAT by 27%, 14.42%, and 
23.54%, respectively compared to conventional pre-level 
technology. 

Kaur and Sulochana [22] designed and implemented a dual 
core system that consisted of two caches and main memory. 
The cache coherence system based on the write invalidate 
approaches and on the MSI, MESI and MOESI protocols. The 
results indicated that the MOESI protocol obtained better 
performance in terms of memory latency, power consumption, 
gate count and execution time. 

Jianhua Li et al. [34] proposed thread-progress-aware 
coherence protocol system. They used the thread progress 
information as hints for coherence adaption. Also, they 
depended on the thread critically to dynamically adapting 
threads coherence. Moreover, they used Simics simulator for 
performing their system experiment. 

The results shown that the proposed system enhanced the 
execution time and energy squandering. Furthermore, they the 
proposed system could execute well especially when the chip 
bandwidth is limited. 

Mencagli et al. [35] proposed new hardware mechanism for 
reducing the interactions between caches generated by the 
cache coherence protocol. They implemented their mechanism 
in a run time support able system in order to depressing 
individual cache contention so as to decrease the active latency 
of inter thread cooperation primitives. They aimed to enable 
fine grained parallelism by optimizing the overhead of 
communication through coordinating cache coherence 
protocol. The proposed system attained good speedup in fine 
grained parallelism. 

Sun et al. [36] designed a system to enhance performance 
of the shared memory. They used selective write shared 
transformation strategy in order to remove coherence traffic and 
misses. Moreover, the proposed technique was implemented 
and evaluated by parallel benchmark called NAS. The 
experimental results of the designed strategy outperformed the 
write invalidate transition by improving 21% of speedup. 

J. Wang and D. Wang [37] proposed a model for network 
on chip based energy used for cache coherence protocol. They 
aimed to reduce the energy of low activated protocol in order to 
reduce the traffic energy and latency by using task mapping 
algorithm. They used three benchmarks for comparing their 
strategy with five protocol of the application layer. The results 
indicated that the proposed model could decrease energy by 
20%. A comparative analysis of all previous mentioned 
methods is shown in Table I. 

 

TABLE I. A COMPARATIVE ANALYSIS OF ALL METHODS 
 

Ref. Year Problem Significant Results Network 

Topology 

[24] 2013 
Cache integration in shared memory faces 

scalability and cost problems. 
Supporting MOESI instances and accelerating data 

transfers. 
MESH 

[34] 2013 Thread progress is affected by cache memory 
The proposed protocol outperformed directory 

protocol 
MESH 

[36] 2014 
Shared data writing latency affects the system 

performance 
The proposed system reduced latency by 21% RING 

[25] 2015 
The cause of CMP performance is strongly 

influenced by the extent to which data is fetched 
from the memory system. 

The address range is displayed by rearrange L2 

improved up to 13, 5 %. 
RING 

[26] 2015 
Time value of data time based on processor 

instructions executed each clock cycle with 
corresponding memory access. 

Display how each scheme affected by cache size and 

block size. 
BUS 

[27] 2015 
The increasing complexity of the coherence 

protocol and network on a chip has become a 

major challenge for pre-silicon verification. 

Effectively reduce engineers’ verification efforts and 

times. 
MESH 

[28] 2016 
Increased access latency because of the large 
number of processors with shared memory. 

Power consumption and maximum latency. MESH 

[23] 2017 
Maintaining data consistency between memory 

and all caches. 

Give a clear picture of the reading and writing 

application being implemented. 
BUS 

[35] 2017 
Communication overhead among caches of 

parallelism 
Enhance speed of parallelism computation MESH 

[30] 2018 
Energy efficiency impact on the development of 

microspheres. 
Include the power and region model by McPAT. MESH 

[29] 2018 
This simulation will evaluate its effect on the 

learning process. 
Presented in terms of quality and quantity. BUS 

[22] 2018 
Inconsistency of data between shared memory and 

caches led to the cache coherence problem 
The performance of MOESI protocol outperformed 

MSI and MESI 
BUS 

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:18



 

 

 

 

[37] 2019 
Cache coherence protocol consume energy in 

application layer 
The designed model saved energy by 15% MESH 

[31] 2019 
Adaptive routing algorithms implementation force 
a relevant resource increase at both network and 

protocol level. 

The performance of the adaptive routing algorithms 

increased more than 23%. 
MESH 

[32] 2019 
Uploading and storing data providing resource 

allocation, managing multiple accesses, and 
keeping the cache coherency. 

Designing a multi-core processor linking system after 

selecting the appropriate flow control protocol. 
MESH 

 

[33] 

 

2019 

An effective prefetching strategy may generate 

more traffic which increases energy consumption 

and network congestion. 

 

The latency of cache miss packets reduces by 

25.34%. 

 

MESH 

 

IV. DISCUSSION 

Considering the comparison details illustrated in Table 1, 
there are several semaphores can be observed. The comparison 
focused on scalability and cost problems facing cache 
integration. Cache memory effects on thread progress. System 
performance affected by shared data writing latency. Data 
fetching from/to memory effects on CMP performance. Data 
time based on processor instructions executed each clock cycle. 
The major challenge for pre-silicon verification is increasing 
complexity of the coherence protocol and network on a chip. 
Some researches depended the uploading and storing data 
providing resource allocation, managing multiple accesses, and 
keeping the cache coherency. This is can be done based on 
designing a multi-core processor linking system. This section 
deals with providing a discussion of a number of methods that 
use the cache coherent protocol in a distributed system. 
Hardware cache coherence systems are classified into two 
categories which are directory-based and snoopy-based. The 
directory-based schemas maintain a central directory to store 
the memory block sharing state. The most common types of 
cache coherent protocols are SI, MI, MSI, MESI, MOSI, 
MEOSI, and MESIF. The best one is MOESI because this 
protocol minimizes number of bus messages sent for an invalid 
transition to a rate while still allowing multiple participants. 

 

V. CONCLUSION 

A cache coherent protocol is one way to interconnection of 
the caches in a multiprocessor. The major challenge of shared 
memory devices is to maintain the cache coherently. In this 
paper, we presented a number of methods used for the cache- 
coherent protocol in a distributed system and which type of 
protocol used for network topology and provided the type of 
cache-coherent protocol. It can be concluded that Cache 
coherence protocol consume energy in application layer and the 
designed model can saves energy by 15%. Also, GPU data are 
used for consumption and data in the shared cache causing 
extended broadcasting period. However, the other one MESI 
which supports both write cache. Hoever, effective prefetching 
strategy may consume latency of cache miss packets reducing 
by 25.34%. 

REFERENCES 

[1] S. R. Zeebaree, L. M. Haji, I. Rashid, R. R. Zebari, O. M. Ahmed, K. 
Jacksi, & H. M. Shukur, “Multicomputer Multicore System Influence on 
Maximum Multi-Processes Execution Time,” TEST Engineering & 
Management, vol. 83, no. May/June, pp. 14921–14931, May 2020. 

[2] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy, 
“Designing Distributed Systems Using Approximate Synchrony in Data 
Center Networks,” 2015, pp. 43–57, Accessed: Feb. 27, 2020. [Online]. 
Available: https://www.usenix.org/conference/nsdi15/technical- 
sessions/presentation/ports. 

[3] R. R. Zebari, S. R. Zeebaree, and K. Jacksi, “Impact Analysis of HTTP 
and SYN Flood DDoS Attacks on Apache 2 and IIS 10.0 Web Servers,” 
in 2018 International Conference on Advanced Science and Engineering 
(ICOASE), 2018, pp. 156–161. 

[4] O. H. Jader, S. R. Zeebaree, and R. R. Zebari, “A State Of Art Survey For 
Web Server Performance Measurement And Load Balancing 
Mechanisms,” INTERNATIONAL JOURNAL OF SCIENTIFIC & 
TECHNOLOGY RESEARCH, vol. 8, no. 12, pp. 535–543, Dec. 2019. 

[5] S. R. Zeebaree, R. R. Zebari, K. Jacksi, and D. A. Hasan, “Security 
Approaches For Integrated Enterprise Systems Performance: A Review,” 
International Journal of Scientific & Technology Research, vol. 8, no. 12, 
Dec. 2019. 

[6] G. Lu, J. Zhan, X. Lin, C. Tan, and L. Wang, “On Horizontal 
Decomposition of the Operating System,” CoRR abs/1604.01378, 2016. 

[7] L. M. Haji, S. R. Zeebaree, K. Jacksi, and D. Q. Zeebaree, “A State of Art 
Survey for OS Performance Improvement,” Science Journal of University 
of Zakho, vol. 6, no. 3, pp. 118–123, 2018. 

[8] Z. N. Rashid, S. R. Zebari, K. H. Sharif, and K. Jacksi, “Distributed Cloud 
Computing and Distributed Parallel Computing: A Review,” in 2018 
International Conference on Advanced Science and Engineering 
(ICOASE), 2018, pp. 167–172. 

[9] S. R. M. Zeebaree, H. M. Shukur, L. M. Haji, R. R. Zebari, K. Jacksi, and 
S. M.Abas, “Characteristics and Analysis of Hadoop Distributed 
Systems,” Technology Reports of Kansai University, vol. 62, no. 4, pp. 
1555–1564, Apr. 2020. 

[10] S. R. Zeebaree, R. R. Zebari, and K. Jacksi, “Performance analysis of 
IIS10.0 and Apache2 Cluster-based Web Servers under SYN DDoS 
Attack,” TEST Engineering & Management, vol. 83, no. March-April 
2020, pp. 5854–5863, 2020. 

[11] S. Bansal, S. Sharma, and I. Trivedi, “A Detailed Review of Fault- 
Tolerance Techniques in Distributed System.,” International Journal on 
Internet & Distributed Computing Systems, vol. 1, no. 1, 2011. 

[12] K. Jacksi, “Design and Implementation of Online Submission And Peer 
Review System: A Case Study Of E-Journal Of University Of Zakho,” 
International Journal of Scientific & Technology Research, vol. 4, no. 8, 
pp. 83–85, 2015. 

[13] S. R. Zeebaree, K. F. Jacksi, and R. R. Zebari, “Impact analysis of SYN 
flood DDOS attack on HAPROXY and NLB cluster-base web servers,” 
Indonesian Journal of Electrical Engineering and Computer Science, vol. 
19, no. 1, Art. no. 1, doi: 10.11591/ijeecs.v19.i1.pp. 505 - 512, 2020. 

[14] Z. Subhi RM and J. Karwan, “Effects of Processes Forcing on CPU and 
Total Execution-Time Using Multiprocessor Shared Memory System,” 
International Journal of Computer Engineering in Research Trends, vol. 
2, no. 4, pp. 275-279, 2015. 

[15] R. R. Zebari, S. R. Zeebaree, K. Jacksi, and H. M. Shukur, “E-Business 
Requirements For Flexibility And Implementation Enterprise System: A 
Review,” International Journal of Scientific & Technology Research, vol. 
8, no. 11, pp. 655–660, Nov. 2019. 

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:19

http://www.usenix.org/conference/nsdi15/technical-


 

 

 

 

[16] R. Komuravelli, S. V. Adve, and C.-T. Chou, “Revisiting the complexity 
of hardware cache coherence and some implications,” ACM Transactions 
on Architecture and Code Optimization (TACO), vol. 11, no. 4, pp. 1–22, 
2014. 

[17] N. B. Mallya, G. Patil, and B. Raveendran, “Simulation based 
Performance Study of Cache Coherence Protocols,” in 2015 IEEE 
International Symposium on Nanoelectronic and Information Systems, 
2015, pp. 125–130. 

[18] O. Alzakholi, L. Haji, H. Shukur, R. Zebari, S. Abas, and M. Sadeeq, 
“Comparison Among Cloud Technologies and Cloud Performance,” 
Journal of Applied Science and Technology Trends, vol. 1, no. 2, Apr. 
2020, doi: 10.38094/jastt1219. 

[19] A. Saparon and F. N. B. Razlan, “Cache Coherence Protocols in Multi- 
Processor,” in International conference on Computer Science and 
Information Systems (ICSIS), 2014, pp. 17–18, 2014. 

[20] X. Qin and P. Mishra, “Automated generation of directed tests for 
transition coverage in cache coherence protocols,” in 2012 Design, 
Automation & Test in Europe Conference & Exhibition (DATE), 2012, 
pp. 3–8. 

[21] Z. Al-Waisi and M. O. Agyeman, “An overview of on-chip cache 
coherence protocols,” in 2017 Intelligent Systems Conference 
(IntelliSys), 2017, pp. 304–309. 

[22] D. P. Kaur and V. Sulochana, “Design and Implementation of Cache 
Coherence Protocol for High-Speed Multiprocessor System,” in 2018 2nd 
IEEE International Conference on Power Electronics, Intelligent Control 
and Energy Systems (ICPEICES), 2018, pp. 1097–1102. 

[23] D. Kehagias and I. Raptis, “An Android-based MESI Cache Coherence 
Simulator.” in 2017, International Virtual Conference on Advanced 
Scientific Result, pp. 194–199. 

[24] C. Bernard, H.-N. Nguyen, E. Guthmuller, and Y. Durand, “Design and 
implementation of an In-Network Cache Coherence protocol,” in 
Proceedings of the International Conference on Parallel and Distributed 
Processing Techniques and Applications (PDPTA), 2013, p. 298. 

[25] Quang, Vinh Ngo et al. “Exploring Cache Coherency Design for Chip 
Multiprocessor using Multi2Sim.” International Journal of Engineering 
Research and Technology 4 (2015), pp. 775 - 779. 

[26] S. Almakdi, A. Alazeb, and M. Alshehri, “Cache coherence mechanisms,” 
International journal of engineering and innovative technology, vol. 4, pp. 
158 - 167, 2015. 

[27] F. L. Y. Team, X. K. Z. B. Y. Jiang, and C. Lou, “Robust Cache 
Coherence Protocol Verification with Inferno.” 

[28] Aghaei, Babak, and Negin Zaman-Zadeh. "Evaluation of Cache 
Coherence Protocols in terms of Power and Latency in Multiprocessors." 
In 3rd International Conference on Research in Engineering. 2016. 

[29] D. Kehagias, “Using two Educational Simulator Tools for Computer 
Architecture Teaching and Learning Support,” International Journal of 
Computer Applications, vol. 180, no. 47, pp. 8 - 12, 2018. 

[30] D. Smelt, “Modeling many-core processor interconnect scalability for the 
evolving performance, power and area relation,” 2018. 

[31] T. A. Eltaras, W. Fornaciari, D. Zoni, "Partial packet forwarding to 
improve performance in fully adaptive routing for cache-coherent nocs." 
In 2019 27th Euromicro International Conference on Parallel, Distributed 
and Network-Based Processing (PDP), 2019, pp. 33-40. 

[32] S. S. Prabhu, A. A. Kadar, and J. Simon, “Design and Development of 
Cache Coherent Interconnect based on ACE Protocol Specification.” 
International Journal of Engineering Research & Technology, vol. 8, pp. 
730-734, 2019. 

[33] D. Deb, J. Jose, and M. Palesi, “ECAP: energy-efficient caching for 
prefetch blocks in tiled chip multiprocessors,” IET Computers & Digital 
Techniques, vol. 13, no. 6, pp. 417–428, 2019. 

[34] J. Li, L. Shi, C. J. Xue, and Y. Xu, “Thread progress aware coherence 
adaption for hybrid cache coherence protocols,” IEEE Transactions on 
Parallel and Distributed Systems, vol. 25, no. 10, pp. 2697–2707, 2013. 

[35] G. Mencagli, M. Vanneschi, and S. Lametti, “The home-forwarding 
mechanism to reduce the cache coherence overhead in next-generation 
CMPs,” Future Generation Computer Systems, vol. 82, pp. 493–509, 
2018. 

[36] S. Sun, H. An, and J. Chen, “Cache Coherence Method for Improving 
Multi-threaded Applications on Multicore Systems,” in 2014 6th 
International Conference on Multimedia, Computer Graphics and 
Broadcasting, 2014, pp. 47–50. 

[37] J. Wang and D. Wang, “A smart protocol-level task mapping for energy 
efficient traffic on network-on-chip,” Microprocessors and Microsystems, 
vol. 65, pp. 69–78, 2019. 

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:20




