Lotus International | ISSN:1124-9064

https://lotusinternational.ac/

Cache Coherence Protocols in Distributed Systems

Abstract

Distributed systems performance is affected significantly by cache coherence protocols due to their role in data consistency maintaining.
Also, cache coherent protocols have a great task for keeping the interconnection of caches in a multiprocessor environment. Moreover,
the overall performance of distributed shared memory multiprocessor system is influenced by the used cache coherence protocol type.
The major challenge of shared memory devices is to maintain the cache coherently. Therefore, in past years many contributions have
been presented to address the cache issues and to improve the performance of distributed systems. This paper reviews in a systematic way
a number of methods used for the cache-coherent protocols in a distributed system.

Keywords: Cache coherence protocol, Distributed System, Multiprocessor system, Shared memory multiprocessor system.

l. INTRODUCTION

The separated design of distributed systems from the core
network makes the worst-case assumptions [1]. However, in
deploying them through distributor applications today in data
centres, it is possible to participate in the design of distributed
systems with their own network layer but it offers essential
benefits [2], [3]. The displaying operating systems problem in
distributed systems suggests new solutions to current problems
[4], [5]- We can alleviate the problem by maintaining a table of
trusted contact canters in each operating system and making all
IP1 processors verify sources [6], [7]. Distributed systems
permit several clients from accessing a common computing
source thus delivers resource sharing [8]-[10]. Air traffic
control, online railway reservation systems, and internet
banking are examples of such distributed computing [11]-[13].

One of the most commonly used parallel programming
models is shared memory due to the advantages of global
address space [14], [15]. The major challenge of shared
memory devices is to maintain the cache coherent, typically
addressed by the hardware cache coherent protocols [16].
coherent failure occurs when updating the local node cache
copy and revoking all shared copies to keep the data coherent
[17], [18].

The most commonly used cache coherence protocols are Sl,
MI, MSI, MESI, MOSI, and MOESI. The first one where

Volume 25 Issue 1 (2025)

releasing storage is not allowed by the cores. The second
protocol (MI) considered the simplest one in use to maintain
cache coherence in MC / MP systems. The third one the MSI
protocol is the simplest of protocols based on deactivation.
MESI which supports both write cache 1 and 2. MOESI
protocol where it reduces the number of bus messages [19],
[20].

The main objective of this article is to review the last
researches on the cache coherence protocols in distributed
system. In addition, to systematically summarize the numerous
works which have achieved in the last few years ago. Section 2
provide details explanation of the cache coherence protocols.
Section 3 gives a literature review about the cache coherence
protocol in a distributed system and presents a comparative
analysis of the surveyed methods. Section 4 is a discussion of
the surveyed methods in the cache coherence protocols of a
distributed system. The conclusion of the study is presented in
section 5.

Il. CAcCHE COHERENCE PROTOCOLS

A cache is a small sized and high-speed memory that caches
data from some of the frequently used addresses in the main
memory. There are two categories of the cache coherence
systems (directory-based and snhoopy-based). The directory-
based schemas maintain a central directory to store the memory
block sharing state. In snoopy-based schemas to maintain

Page No:15

Lotus International | ISSN:1124-9064

consistent data, the request broadcasting and activity
monitoring of the memory bus is done by the cache controller
[16].

A cache coherent protocol is one way to maintain the
interconnection of caches in a multiprocessor environment
using hardwar [18]. Cache consistency issues cause another
type of "cache error" coherence loss plus binding, conflict, and
capacity errors. The coherence failure occurs in case of
updating the local node cache copy and canceling all shared
copies to maintain data consistency. The most common types
of cache coherent protocols are Sl, Ml, MSI, MESI, MOSI,
MEOSI, and MESIF [20].

A. Shared-Invalid (SI)

The Sl is a parsed version of the MSI protocol, where
releasing storage is not allowed by the cores. The system that
has n cores, the correct general state allows the system to store
cache blocks in any m centers in | and block the cache in other
n - m centers in the S state. The entire space of the SI protocol
state with cores n is hypercubel dimensions [20].

B. Modified-Invalid (MI)

The MI protocol considered the simplest one in use to
maintain cache coherence in MC / MP systems. This protocol
uses two conditions: Modify (M) and Invalid (I). It has the least
hardware complexity among all coherence protocols.
Reading/writing in one node invalidates the data in another
node if the same data exists [17].

C. Modified -Shared-Invalid (MSI)

The MSI protocol is the simplest of protocols based on
deactivation. It consists of only 3 cases modified (M), shared
(S), and invalid (1). Fig. 1 illustrates the MSI protocol diagram.
The invalid case is where the local cache copy does not contain
a valid copy. The shared state means that the local cache and
other caches may contain a valid copy in relation to the main
memory [19].

RH/WH

A\

AM RS
\\-// \ sHiv ..

— Write Back

\\j/ \\‘{
§ K SHW
™\ ‘,

\sHw /

WHISHW
WH/SHW |

RH/WH
//‘\\'
\"

{0
_’/

Fig 1: State diagram of the MSI protocol [21]

Volume 25 Issue 1 (2025)

https://lotusinternational.ac/

D. Modified-Exclusive-Shared-Invalid (MESI)

The MESI protocol considered one of the most commonly
used cache coherence protocols, which supports both write
cache 1 and 2 [19]. This protocol is an advance of the MSI
protocol that has added a special case (E) to reduce the number
of mobile carriers sending the incorrect fix to the rate. The
exclusive case is where the local cache contains a valid copy
[16]. Fig. 2 illustrates the state transition of the MESI protocol.

RH/WH
X
/ \/

N
X M)

A /

2 -
WH SHW\

7 N\ :

k. Write Back '

\ \ \ \ |SHW
WHISHW / \\// $HR Fs

|

Fig 2: State diagram of the MESI protocol [22]

E. Modified-Owned-Shared-Invalid (MOSI)

In the MOSI, the transport node transfers the converted data
to a read requestor without rewriting it. In the requesting node
and the responding node, the cache line state is updated to S and
O respectively. The status O permits the dirty copy to be shared
between various nodes. It is omitted via combining the states
of the MESI and MOSI in the Modified-Owned-Exclusive-
Shared-Invalid protocol (MOESI) [23].

F. Modified-Owned-Exclusive-Shared-Invalid (MOESI)

The additional extension of the MESI protocol is the
MOESI protocol where it minimizes the number of bus
messages sent for an invalid transition to a rate while still
allowing multiple participants. This protocol has another state
called Owned that has a valid copy of the local cache [19].
Fig. 3 illustrates the transition diagram of the MOESI case.

Page No:16

Lotus International | ISSN:1124-9064

RH/MWH

WH . E SHR

3HR \SHW
BHW

RH
SHWY [S

RMS| SHW
RHWWH

Fig 3: State diagram of the MOESI protocol [22]

IIl. LITERATURE REVIEW

Bernard et. al. [24] proposed a native protocol for network
cache correlation (IN-CC) with linear scalability. Moreover,
expand the protocol with several improvements: mechanisms
for blocking both message routing and resource reservation
cycles, supporting MOESI instances and accelerating data
transfers by dividing the network into two parallel segments.
Cache integration in shared memory greatly simplifies its
programmability but faces scalability and cost problems.
Finally, they recognize the implementation of the promote
protocol on FPGA for the purpose of performance
measurements and validation.

Quang and Do [25] focused on exploring MOESI, a well-
defined cache coherence protocol common in CMP. The cause
of CMP performance is strongly influenced by the extent to
which data is fetched from the memory system. Our experience
is based on the Splash-2 standard, which is widely used in every
publication related to CMP design. The results of the
experiment show that by rearranging the range of addresses of
memory banks, the ratio of access to L2 can be improved to
13.5%.

Almakdi et al. [26] implemented snoopy and directory
protocols and measured the entry rate, mandatory error rate,
amplitude loss rate and coherent strength for each one. Solved
the problem of the specific time value of data time based on
processor instructions executed each clock cycle with
corresponding memory access. Additionally, they explained
how each map is affected by block size and cache size. The
objectives are to explore the characteristics of consistency

Volume 25 Issue 1 (2025)

https://lotusinternational.ac/

mechanisms that include custom caches by searching for two
common types of mechanisms.

Team et al. [27] implemented a robust MESI protocol
designed specifically for Verilog directory-based caching
protocol. The increasing complexity of the coherence protocol
and network on a chip has become a major challenge for pre-
silicon verification. Adding Inferno to the verification process
can reduce the time and effort that verification engineers need
to detect and locate potential design errors. Also, summarize
user experience with Inferno and offer suggestions to both
Inferno users and developers.

Aghaei et al. [28] evaluated the latency and power of a
multiprocessor system with several cache coherence protocols.
They used the GEMS5 simulation for implementing their system.
The access latency increased because of the large number of
processors with shared memory. Moreover, five injection rates
(0.1,0.2,0.3, 0.4 and 0.5) were depended for traffic generation.
The experimental based on measuring the characters of power,
latency, and empirical result. The experimental result presented
that the maximum power consumption and latency was
performed by MOESI-CMP.

Kehagias and Raptis [23] purposed to teach and learn cache
cohesion in advanced computer engineering courses. The
problem of maintaining data consistency between memory and
all caches is known as a cache cohesion problem. This work is
a continuation of the previous desktop application for the MESI
cache cohesion simulator. Simulation provides an interactive
communication with the students; it is implemented in Visual
Studio IDE and Unity Engine by using scripts in C#.

Kehagias [29] developed two simulation tools that are
supported to the learning and teaching of the MESI cache
coherence protocol and dynamic scheduling using the
Tomasulo algorithm. Furthermore, introduced this simulation
and assess its impact on the learning process. This simulation
will evaluate its effect on the learning process. Results are
presented in terms of quality and quantity.

Smelt [30] illustrated Intel x86 CPU networking from bus
to point-to-point interfaces, was increasingly evident. The
underlying causes of energy efficiency and their impact on the
development of microspheres. The researcher examined the
performance, power, and space scalability on some processors
by using the Snooper x86 PC architecture emulator. The
scalability between the bus topology and loops (NoC) and
different networks (NoC) in Haswell's simulated architecture is
compared by Snooper results, which comprise the power and
region model by McPAT.

Eltaras et al. [31] proposed a novel scheme control to
enhance the performance of a cache coherent network based on
the adaptive routing algorithms. They aimed to reuse virtual
channels among short and long packet. Moreover, the authors
split the long packets into several chunks and allocated virtual
channels to chunk and the entire packet. The experiment results
illustrated that the performance of the routing algorithms
increased and outperformed routing function in terms of
flexibility. Besides, the presented scheme achieved better
performance compared to other works regarding the number of
resources.

Page No:17

Lotus International | ISSN:1124-9064

Prabhu et al. [32] suggested work encompass achieving
multiple channels by using an independent 2D network
topology based on the ACE protocol specification. The
objective of the proposed work is to design a multi-core
processor linking system after selecting the appropriate routing
algorithm, flow control protocol, and precise router
architecture.

Deb et al. [33] proposed an energy-efficient caching
strategy for blocks bringing ECAP. An effective prefetching
strategy may generate more traffic, which increases energy
consumption and network congestion. It uses a lower set of
near-tile cache that runs light applications such as memories of
the default tile cache that runs high applications in order to
place the prefetching blocks. The ECAP minimizes the link
power in NoC, the router, and AMAT by 27%, 14.42%, and
23.54%, respectively compared to conventional pre-level
technology.

Kaur and Sulochana [22] designed and implemented a dual
core system that consisted of two caches and main memory.
The cache coherence system based on the write invalidate
approaches and on the MSI, MESI and MOESI protocols. The
results indicated that the MOESI protocol obtained better
performance in terms of memory latency, power consumption,
gate count and execution time.

Jianhua Li et al. [34] proposed thread-progress-aware
coherence protocol system. They used the thread progress
information as hints for coherence adaption. Also, they
depended on the thread critically to dynamically adapting
threads coherence. Moreover, they used Simics simulator for
performing their system experiment.

https://lotusinternational.ac/

The results shown that the proposed system enhanced the
execution time and energy squandering. Furthermore, they the
proposed system could execute well especially when the chip
bandwidth is limited.

Mencagli et al. [35] proposed new hardware mechanism for
reducing the interactions between caches generated by the
cache coherence protocol. They implemented their mechanism
in a run time support able system in order to depressing
individual cache contention so as to decrease the active latency
of inter thread cooperation primitives. They aimed to enable
fine grained parallelism by optimizing the overhead of
communication through coordinating cache coherence
protocol. The proposed system attained good speedup in fine
grained parallelism.

Sun et al. [36] designed a system to enhance performance
of the shared memory. They used selective write shared
transformation strategy in order to remove coherence traffic and
misses. Moreover, the proposed technique was implemented
and evaluated by parallel benchmark called NAS. The
experimental results of the designed strategy outperformed the
write invalidate transition by improving 21% of speedup.

J. Wang and D. Wang [37] proposed a model for network
on chip based energy used for cache coherence protocol. They
aimed to reduce the energy of low activated protocol in order to
reduce the traffic energy and latency by using task mapping
algorithm. They used three benchmarks for comparing their
strategy with five protocol of the application layer. The results
indicated that the proposed model could decrease energy by
20%. A comparative analysis of all previous mentioned
methods is shown in Table I.

TABLEI. A COMPARATIVE ANALYSIS OF ALL METHODS
Ref. Year Problem Significant Results Network
Topology
Cache integration in shared memory faces Supporting MOESI instances and accelerating data
(24] 2013 scalability and cost problems. transfers. MESH
[34] 2013 Thread progress is affected by cache memory The proposed protol;:?oltgggerformed directory MESH
Shared data writing latency affects the system
[36] 2014 performance The proposed system reduced latency by 21% RING
The cause of CMP performance is strongly -
[25] 2015 influenced by the extent to which data is fetched The addressir?ngsvles ddlsp:gyfg t;yo/rearrange L2 RING
from the memory system. p up »9 70
Time value of data time based on processor . .
[26] 2015 instructions executed each clock cycle with Display how each schslrgcekag‘;gted by cache size and BUS
corresponding memory access. '
The increasing complexity of the coherence . . S
[27] 2015 protocol and network on a chip has become a Etfectively reduce engntlﬁ;ress verification efforts and MESH
major challenge for pre-silicon verification. '
Increased access latency because of the large - .
[28] 2016 number of processors with shared memory. Power consumption and maximum latency. MESH
Maintaining data consistency between memory Give a clear picture of the reading and writing
[23] 2017 e A BUS
and all caches. application being implemented.
[35] 2017 Communlcatlonpoa\l{glrlr:j{as%among caches of Enhance speed of parallelism computation MESH
[30] 2018 Energy efficiency impact on the development of Include the power and region model by McPAT. MESH
microspheres.
This simulation will evaluate its effect on the - - -
[29] 2018 learning process. Presented in terms of quality and quantity. BUS
[22] 2018 Inconsistency of data between shared memory and The performance of MOESI protocol outperformed BUS
caches led to the cache coherence problem MSI and MESI
Volume 25 Issue 1 (2025) Page No:18

Lotus International | ISSN:1124-9064

https://lotusinternational.ac/

Cache coherence protocol consume energy in

[37] | 2019 application layer

The designed model saved energy by 15% MESH

Adaptive routing algorithms implementation force

The performance of the adaptive routing algorithms

and network congestion.

[31] 2019 a relevant resource increase at both network and . d han 239 MESH
protocol level. increased more than 23%.
Uploading and storing data providing resource A . S
[32] 2019 allocation, managing multiple accesses, and Designing a multi-core processor linking system after MESH
keeping the cache coherency. selecting the appropriate flow control protocol.
An effective prefetching strategy may generate :
[33] 2019 more traffic which increases energy consumption The latency of cache miss packets reduces by MESH

25.34%.

IV. DISCUSSION

Considering the comparison details illustrated in Table 1,
there are several semaphores can be observed. The comparison
focused on scalability and cost problems facing cache
integration. Cache memory effects on thread progress. System
performance affected by shared data writing latency. Data
fetching from/to memory effects on CMP performance. Data
time based on processor instructions executed each clock cycle.
The major challenge for pre-silicon verification is increasing
complexity of the coherence protocol and network on a chip.
Some researches depended the uploading and storing data
providing resource allocation, managing multiple accesses, and
keeping the cache coherency. This is can be done based on
designing a multi-core processor linking system. This section
deals with providing a discussion of a number of methods that
use the cache coherent protocol in a distributed system.
Hardware cache coherence systems are classified into two
categories which are directory-based and snoopy-based. The
directory-based schemas maintain a central directory to store
the memory block sharing state. The most common types of
cache coherent protocols are SI, MI, MSI, MESI, MOSI,
MEOSI, and MESIF. The best one is MOESI because this
protocol minimizes number of bus messages sent for an invalid
transition to a rate while still allowing multiple participants.

V. CONCLUSION

A cache coherent protocol is one way to interconnection of
the caches in a multiprocessor. The major challenge of shared
memory devices is to maintain the cache coherently. In this
paper, we presented a number of methods used for the cache-
coherent protocol in a distributed system and which type of
protocol used for network topology and provided the type of
cache-coherent protocol. It can be concluded that Cache
coherence protocol consume energy in application layer and the
designed model can saves energy by 15%. Also, GPU data are
used for consumption and data in the shared cache causing
extended broadcasting period. However, the other one MESI
which supports both write cache. Hoever, effective prefetching
strategy may consume latency of cache miss packets reducing
by 25.34%.

REFERENCES

[1] S. R. Zeebaree, L. M. Haji, I. Rashid, R. R. Zebari, O. M. Ahmed, K.
Jacksi, & H. M. Shukur, “Multicomputer Multicore System Influence on
Maximum Multi-Processes Execution Time,” TEST Engineering &
Management, vol. 83, no. May/June, pp. 14921-14931, May 2020.

Volume 25 Issue 1 (2025)

[2] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy,
“Designing Distributed Systems Using Approximate Synchrony in Data
Center Networks,” 2015, pp. 43-57, Accessed: Feb. 27, 2020. [Online].
Auvailable: https://www.usenix.org/conference/nsdil5/technical-
sessions/presentation/ports.

[3] R.R. Zebari, S. R. Zeebaree, and K. Jacksi, “Impact Analysis of HTTP
and SYN Flood DDoS Attacks on Apache 2 and IIS 10.0 Web Servers,”
in 2018 International Conference on Advanced Science and Engineering
(ICOASE), 2018, pp. 156-161.

[4] O.H.Jader, S. R. Zeebaree, and R. R. Zebari, “A State Of Art Survey For
Web Server Performance Measurement And Load Balancing
Mechanisms,” INTERNATIONAL JOURNAL OF SCIENTIFIC &
TECHNOLOGY RESEARCH, vol. 8, no. 12, pp. 535-543, Dec. 2019.

[5] S. R. Zeebaree, R. R. Zebari, K. Jacksi, and D. A. Hasan, “Security
Approaches For Integrated Enterprise Systems Performance: A Review,”
International Journal of Scientific & Technology Research, vol. 8, no. 12,
Dec. 2019.

[6] G. Lu, J. Zhan, X. Lin, C. Tan, and L. Wang, “On Horizontal
Decomposition of the Operating System,” CoRR abs/1604.01378, 2016.

[71 L.M. Haji, S. R. Zeebaree, K. Jacksi, and D. Q. Zeebaree, “A State of Art
Survey for OS Performance Improvement,” Science Journal of University
of Zakho, vol. 6, no. 3, pp. 118-123, 2018.

[8] Z.N.Rashid, S.R. Zebari, K. H. Sharif, and K. Jacksi, “Distributed Cloud
Computing and Distributed Parallel Computing: A Review,” in 2018
International Conference on Advanced Science and Engineering
(ICOASE), 2018, pp. 167-172.

[9] S.R.M. Zeebaree, H. M. Shukur, L. M. Haji, R. R. Zebari, K. Jacksi, and
S. M.Abas, “Characteristics and Analysis of Hadoop Distributed
Systems,” Technology Reports of Kansai University, vol. 62, no. 4, pp.
1555-1564, Apr. 2020.

[10] S. R. Zeebaree, R. R. Zebari, and K. Jacksi, “Performance analysis of
11S10.0 and Apache2 Cluster-based Web Servers under SYN DDoS
Attack,” TEST Engineering & Management, vol. 83, no. March-April
2020, pp. 5854-5863, 2020.

[11] S. Bansal, S. Sharma, and 1. Trivedi, “A Detailed Review of Fault-
Tolerance Techniques in Distributed System.,” International Journal on
Internet & Distributed Computing Systems, vol. 1, no. 1, 2011.

[12] K. Jacksi, “Design and Implementation of Online Submission And Peer
Review System: A Case Study Of E-Journal Of University Of Zakho,”
International Journal of Scientific & Technology Research, vol. 4, no. 8,
pp. 83-85, 2015.

[13] S.R. Zeebaree, K. F. Jacksi, and R. R. Zebari, “Impact analysis of SYN
flood DDOS attack on HAPROXY and NLB cluster-base web servers,”
Indonesian Journal of Electrical Engineering and Computer Science, vol.
19, no. 1, Art. no. 1, doi: 10.11591/ijeecs.v19.i1.pp. 505 - 512, 2020.

[14] Z. Subhi RM and J. Karwan, “Effects of Processes Forcing on CPU and
Total Execution-Time Using Multiprocessor Shared Memory System,”
International Journal of Computer Engineering in Research Trends, vol.
2,n0. 4, pp. 275-279, 2015.

[15] R. R. Zebari, S. R. Zeebaree, K. Jacksi, and H. M. Shukur, “E-Business
Requirements For Flexibility And Implementation Enterprise System: A
Review,” International Journal of Scientific & Technology Research, vol.
8, no. 11, pp. 655-660, Nov. 2019.

Page No:19

http://www.usenix.org/conference/nsdi15/technical-

Lotus International | ISSN:1124-9064

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

R. Komuravelli, S. V. Adve, and C.-T. Chou, “Revisiting the complexity
of hardware cache coherence and some implications,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 11, no. 4, pp. 1-22,
2014.

N. B. Mallya, G. Patil, and B. Raveendran, “Simulation based
Performance Study of Cache Coherence Protocols,” in 2015 IEEE
International Symposium on Nanoelectronic and Information Systems,
2015, pp. 125-130.

O. Alzakholi, L. Haji, H. Shukur, R. Zebari, S. Abas, and M. Sadeeq,
“Comparison Among Cloud Technologies and Cloud Performance,”
Journal of Applied Science and Technology Trends, vol. 1, no. 2, Apr.
2020, doi: 10.38094/jastt1219.

A. Saparon and F. N. B. Razlan, “Cache Coherence Protocols in Multi-
Processor,” in International conference on Computer Science and
Information Systems (ICSIS), 2014, pp. 17-18, 2014.

X. Qin and P. Mishra, “Automated generation of directed tests for
transition coverage in cache coherence protocols,” in 2012 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2012,
pp. 3-8.

Z. Al-Waisi and M. O. Agyeman, “An overview of on-chip cache
coherence protocols,” in 2017 Intelligent Systems Conference
(IntelliSys), 2017, pp. 304-309.

D. P. Kaur and V. Sulochana, “Design and Implementation of Cache
Coherence Protocol for High-Speed Multiprocessor System,” in 2018 2™
IEEE International Conference on Power Electronics, Intelligent Control
and Energy Systems (ICPEICES), 2018, pp. 1097-1102.

D. Kehagias and 1. Raptis, “An Android-based MESI Cache Coherence
Simulator.” in 2017, International Virtual Conference on Advanced
Scientific Result, pp. 194-199.

C. Bernard, H.-N. Nguyen, E. Guthmuller, and Y. Durand, “Design and
implementation of an In-Network Cache Coherence protocol,” in
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), 2013, p. 298.

Quang, Vinh Ngo et al. “Exploring Cache Coherency Design for Chip
Multiprocessor using Multi2Sim.” International Journal of Engineering
Research and Technology 4 (2015), pp. 775 - 779.

S. Almakdi, A. Alazeb, and M. Alshehri, “Cache coherence mechanisms,”
International journal of engineering and innovative technology, vol. 4, pp.
158 - 167, 2015.

F. L. Y. Team, X. K. Z. B. Y. Jiang, and C. Lou, “Robust Cache
Coherence Protocol Verification with Inferno.”

Aghaei, Babak, and Negin Zaman-Zadeh. "Evaluation of Cache
Coherence Protocols in terms of Power and Latency in Multiprocessors."
In 3rd International Conference on Research in Engineering. 2016.

D. Kehagias, “Using two Educational Simulator Tools for Computer
Architecture Teaching and Learning Support,” International Journal of
Computer Applications, vol. 180, no. 47, pp. 8 - 12, 2018.

D. Smelt, “Modeling many-core processor interconnect scalability for the
evolving performance, power and area relation,” 2018.

T. A. Eltaras, W. Fornaciari, D. Zoni, "Partial packet forwarding to
improve performance in fully adaptive routing for cache-coherent nocs."
In 2019 27th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), 2019, pp. 33-40.

S. S. Prabhu, A. A. Kadar, and J. Simon, “Design and Development of
Cache Coherent Interconnect based on ACE Protocol Specification.”
International Journal of Engineering Research & Technology, vol. 8, pp.
730-734, 2019.

D. Deb, J. Jose, and M. Palesi, “ECAP: energy-efficient caching for
prefetch blocks in tiled chip multiprocessors,” IET Computers & Digital
Techniques, vol. 13, no. 6, pp. 417428, 2019.

J. Li, L. Shi, C. J. Xue, and Y. Xu, “Thread progress aware coherence
adaption for hybrid cache coherence protocols,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 10, pp. 2697-2707, 2013.

G. Mencagli, M. Vanneschi, and S. Lametti, “The home-forwarding
mechanism to reduce the cache coherence overhead in next-generation
CMPs,” Future Generation Computer Systems, vol. 82, pp. 493-509,
2018.

Volume 25 Issue 1 (2025)

https://lotusinternational.ac/

[36] S. Sun, H. An, and J. Chen, “Cache Coherence Method for Improving

Multi-threaded Applications on Multicore Systems,” in 2014 6th
International Conference on Multimedia, Computer Graphics and
Broadcasting, 2014, pp. 47-50.

[37] J. Wang and D. Wang, “A smart protocol-level task mapping for energy

efficient traffic on network-on-chip,” Microprocessors and Microsystems,
vol. 65, pp. 69-78, 2019.

Page No:20

