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The Simultaneous Localization and Mapping (SLAM)-An
Overview

Abstract

Positioning is needed for many applications related to mapping and navigation, either in civilian or military domains. The significant
developments in satellite-based techniques, sensors, telecommunications, computer hardware and software, image processing, etc.
positively influenced solving the positioning problem efficiently and instantaneously. Accordingly, the mentioned development empowered
the applications and advancement of autonomous navigation. One of the most interestingly developed positioning techniques is what is
called in robotics Simultaneous Localization and Mapping (SLAM). The SLAM problem solution has witnessed a quick improvement in
the last decades, either using active sensors like the RAdio Detection and Ranging (Radar) and Light Detection and Ranging (LiDAR) or
passive sensors like cameras. Definitely, positioning and mapping is one of the main tasks for geomatics engineers, and therefore it's of
high importance for them to understand the SLAM topic, which is not easy because of the huge documentation and algorithms available
and the various SLAM solutions in terms of the mathematical models, complexity, the sensors used, and the type of applications. In this
paper, a clear and simplified explanation of SLAM from a geometrical viewpoint is introduced, avoiding going into the complicated
algorithmic details behind the presented techniques. In this way, a general overview of SLAM is presented, showing the relationship
between its different components and stages, like the core part of the front-end and back-end, and their relation to the SLAM paradigm.
Furthermore, we explain the major mathematical techniques of filtering and pose graph optimization, either using visual or LiDAR
SLAM, and introduce a summary of the efficient contribution of deep learning to the SLAM problem. Finally, we address examples of
some existing practical applications of SLAM in our reality.

Keywords: SLAM, Visual Odometry, Graph Pose Optimization, Extended Kalman Filter, Deep Learning.
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SLAM is an acronym for Simultaneous Localization And
Mapping which is a technology that enables a robot to map an
unknown environment and position itself based on the built
map at the same time [1] and frequently with the absence of
exterior positioning systems such as Global Navigation
Satellite System GNSS [2]. The starting point for SLAM was
at the third IEEE International Conference on Robotics and
Automation which was held in San Francisco, in 1986. While
the first use of the term “SLAM” was at the Seventh
International Symposium of Robotics Research which was
held in Munich, Germany, in 1995 by Durrant-Whyte, et al.
[3]. Nowadays, SLAM is a major factor behind autonomous
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various autonomous indoor and outdoor mobile mapping
applications [4, 5]. To accomplish this SLAM step, the robot
should have on-board sensors that apply several
measurements along the robot trajectory. Major robot sensors
used can be the camera, LIDAR, GNSS receiver/antenna, and
the Inertial Measurement Unit IMU. When the SLAM
algorithm is based on camera sensors it is called visual SLAM,
while when based on laser scanners is called LIDAR SLAM
[6, 7].

One of the important sensors mounted on the robot is the
IMU, which is used to measure the linear and rotational
acceleration of the robots. In more detail, IMU is a
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combination of triaxial accelerometers that measure dynamic
acceleration and gravity and triaxial gyroscopes measure
angular velocity.
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Fig.1. SLAM techniques overview.

Sometimes triaxial magnetometers are integrated with
them. Accordingly, the speed of the robot and the traveled
distance can be estimated from the IMU measurements which
can be used for odometry. However, the IMU-based
navigation suffers from accumulated error over time since the
positions are computed using the dead reckoning method [8].
Therefore, the IMU in robots manufactured for use outdoors
is usually integrated with GNSS, which permits the
acquisition of the absolute position to a high level of accuracy
in open-sky environments.

This GNSS measurement provides direct information
about the location of the robot independently from the
previous location estimates and therefore no positional
accumulated errors occurred further [4]. Nevertheless, the
integration of the GNSS with the IMU leads to a more robust
navigation system, especially in urban environments where
the quality of GNSS signals sometimes degrades or even
outages in blocked areas [9]. Consequently, SLAM is a
challenging problem either for indoor mapping applications or
GNSS denied outdoor environments like in urban canyon and
forests where sophisticated techniques are required for having
a reliable localization and mapping solution.

The traditional solution for SLAM at GNSS denied areas
is to fix landmarks (reference points or control points) that can
be easily identified from the robot sensors. However, this
approach is costly and difficult to be used in large-scale
environments.

The core implementation of a SLAM system incorporates
two main components: the front-end and the back-end as
shown in Figure 1. In the front-end component, the detection
and tracking of features from imaging sensors (Visual

Volume 25 Issue 2 (2025)

ing

SLAM) either monocular or stereoscopic can be applied [10,
11]. This is very well known in computer vision and
photogrammetry and called the structure from motion SfM
technique [12]. The corresponding features in consecutive
images/scans are associated; this is the so-called data
association.

In LiDAR SLAM, the front end step is applied by scanning
the environment attained from a moving robot [13, 14] and the
successive point clouds are coregistered using the well-known
scan matching techniques like the iterative closets point ICP
[15, 16].

Hence, features can be sparse as landmarks or dense as
point clouds depending on the sensor type and technique used
for the feature detection and tracking. Whenever the robot
moves, new landmarks or point clouds are detected and
tracked. The features can also be lines [17], planes [35], or
surfels [18] extracted from the LiDAR data.

However, the performance of these feature-based SLAM
algorithms is mainly based on the success of the detection and
tracking methods within the front-end step. For instance,
image-based SLAM will fail in textureless areas and provide
a low ability to deal with poorly textured ones, and planar
feature-based SLAM will fail in environments that lack planar
structures.

Therefore the outliers that can be found in this step may
highly mislead the following step of the back end where the
pose of the robot and the location of the landmarks is
estimated.

The back-end can be applied using complex mathematical
techniques either using filtering or smoothing techniques as
will be explained in the next section and involved mainly with
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the estimation or update of the landmarks and the robot
positions in a reference coordinate system [13].

In this paper, we provide an overview of the SLAM
solution showing the relationship between its different
components and stages. We address the general problem from
different types of data and illustrate the different techniques
with the advantages and disadvantages of each. Finally, we list
some existing practical SLAM-based applications in our
reality. The paper can serve as a tutorial for SLAM users or
even non-specialized readers.

The remainder of this paper is structured as follows: In the
following section, we present the SLAM paradigm. In Section
3, we commence with a brief overview of SLAM in the 2D
and 3D space domain, then we proceed with SLAM
enhancement techniques in Section 4. Section 5 presents
SLAM sensor-based techniques. The different map
representations in SLAM are discussed in section 6. Section 7
introduces a summary of the deep learning efficient
contribution to the SLAM. Next, some different SLAM-based
applications in our reality are listed in Section 8. Finally, the
paper ends with conclusions in Section 9.

Il. SLAM PARADIGM

SLAM should work perfectly in a well-identified
environment with available high certainty in Robot positions.
However, in the real-life scenario, SLAM must deal with high
uncertainties in the surroundings and with imperfect
knowledge of the Robot positions. Accordingly, the SLAM
problem is generally defined employing probabilistic tools
because of the inherent sensor measurement noise [11].

Currently, many solutions are found to the SLAM problem
which can be classified either as filtering or smoothing
approaches (Fig.1). Filtering approaches are more suitable for
on-line robot state and map estimation. The estimate is
supplemented and refined by immediate integration of the new
sensor measurements as the robot moves. Techniques like
Kalman filters [19] and particle filters [20] are a major
example of this filtering SLAM type and are typically
designed as on-line SLAM techniques.

Filtering approaches are applied in two main steps: a
prediction step and an update step. Generally, they are
considered as a maximum a posterior (MAP) method in which
measurements from sensors like the IMUs are used to estimate
the prior distribution of the robot pose. The IMU
measurements are combined with the measurements taken
mostly by a camera or a LiDAR to build the likelihood
distribution [21]. In a typical SLAM filtering approach, the
IMU sensor measurements are used in the prediction step to
predict the motion of the vehicle (odometry) [22]. While the
measured features on images and the estimated camera pose
are used as a likelihood distribution to update the predictions
in the update step [21]. Filtering approaches will be more
explained in the next section.

On the other hand, smoothing approaches like the graph
SLAM, estimate the full robot trajectory by processing the full
set of the sensor measurements. These smoothing approaches
are categorized as the full SLAM problem, and they normally
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rely on least-squares adjustment techniques and optimization
[23, 24] which is considered as an advantage over the filtering
process in terms of accuracy. On the other hand, the main
disadvantage of the graph SLAM is the high memory
consumption as it combines all the pose estimates in the
computation procedure. While procedures like the Kalman
filtering consider the last pose only and the motion model [25]
to enable an online implementation and use the loop closure
to increase the accuracy.

In both filtering and smoothing approaches, it is now clear
to the reader the significant amount of mathematical
formulation required to have a final reliable robot poses and
constructed map [11]. This expensive computing cost is a
challenge when executing SLAM on robot hardware.
Computation is usually performed on limited processing
power microprocessors while to achieve accurate SLAM
localization, it is important to execute either image
processing or point cloud alignment at a high rate [26].
Furthermore, optimization calculations like loop closure are
costly computational processes. Altogether, it is a challenge to
execute such computationally expensive processing on robot
microcomputers. Different solutions are proposed to
overcome this problem like parallel processing, using multi-
core CPUs, or embedded GPUs to improve the processing
speeds [26].

A) Extended Kalman Filter EKF

The Extended Kalman Filter EKF technique is based on
tracking a Gaussian belief of the robot and assumes all the
measurements have a Gaussian noise behavior. EKF can be
applied in the following main steps: predict state, predict
measurement, apply the real measurements, associate the data,
and finally update. In SLAM, EKF determines the position
and orientation of a robot by verifying its state X, and its
uncertainty P;, from the noisy IMU measurements. Then the
real measurement information captured by the camera or the
LiDAR is integrated to improve the state prediction (pose) in
an updated step X}. The updated pose state and its uncertainty
will be fed back as (£;—1, Pr—1) for modeling a new prediction
and update (Fig.2). Further reading about the EKF
computational approach can be found in [27].

Update

Prediction

J \ sensor reading for 1
the current state

Dynamic mode I effect

uncertinty of the
dynamic system

Sensor uncertinty

Fig. 2. General workflow of Kalman filter [27].

The formulating of the Kalman filter can be summarized
as follows where we have two Gaussian distributions [27]:
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Fig.3. lllustration of the prediction, uncertainty propagation, and update using filtering SLAM

1. The predicted measurement Bx; and its
uncertainty with kakBic where B is the jacobian

matrix.

2. The observed measurement (z”y, Ry) where the
current sensor state is z” and its uncertainty Ry,

The Kalman gain matrix is computed as:
FK = BkPkBlt( (BkPkB]i'i'Rk)_l (]_)

Then, the update state calculations can be applied as:

K = PkB;i (BkPkBkt'i'Rk)_l (2)
xh = xi + K'(z'k — Bii) (€)]
P]:' = Pk —K’kak (4)

The mentioned equations are used to update the system in
a repetitive way where % is the new estimate and together
with P} are replaced back into a new iteration
of prediction and continue until a stopping criterion is
satisfied.

In Fig. 3, the concept of online SLAM using filtering is
shown where SLAM estimates the most recent robot pose
state based upon the previous states. A sequence of
illustrations is given where the robot starts measuring
landmark A using a mounted sensor [20]. At the start location,
a zero uncertainty at the robot pose is assumed while
predicting an uncertainty value at the landmark as propagated
by the measurement uncertainty. Then when the robot moves,
its pose is calculated with a Gaussian-based uncertainty. Two
other landmarks B and C are measured and their positions with
the associated uncertainty are estimated. The robot continues
its movement with an updated predicted pose and uncertainty
and when detects a revisited feature (landmark A) a loop
closure calculations are applied. Thus, the uncertainty in the
robot poses and landmarks improves significantly.
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Ullah, et al. [28] have developed two SLAM algorithms
for robot localization, the first one is based on the linear KF
and the second one is based on the EKF. Although EKF is one
of the most common filtering techniques, it has some
disadvantages like being difficult to implement in practice.
Moreover, it is not a very accurate method for complicated
nonlinear systems or with high uncertainty problems [21].

B) Graph SLAM

A widely used SLAM technique is the graph formulation
which involves constructing a graph with connected nodes
(Fig.4). Every node represents a robot pose or a measured
landmark and in which the edges between the nodes represent
the sensor measurement that constrains the connected poses
[29]. After completing the graph construction, the essential
problem is to find the optimal alignment of the nodes that is
maximally consistent with the measurements (smoothing). As
a result, this requires solving a large-scale constrained
minimization problem. Accordingly, the graph SLAM
problem is divided into two tasks: 1) graph construction and
2) graph optimization [29].

The constraints (edges) are constructed based on the
sensor measurements either as odometry measurements
between subsequent robot locations or computed from the
alignment of images or laser scans captured at two different
robot poses. Afterward, optimization should be applied to find
the best graph configuration that satisfies the constraints [29].
However, this optimization task is challenging to implement
on a long navigation trajectory dealing with a large system of
nonlinear equations [14]. However, the sparse structure of the
matrices can allow cost-effective algorithms to perform this
SLAM global optimization. Currently, few open source
libraries are available to deal with the solution of large-scale
sparse systems like the g2o library [30], Ceres Solver [31], or
the GTSAM [32].
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In visual SLAM, the graph SLAM optimization is similar
to the well know photogrammetric Bundle adjustment where
the positions of the observed feature points (landmarks) are
estimated simultaneously with robot poses as shown in Fig.4
[33]. It should be noted that in some applications the positions
of the landmarks are fixed a priori (control points), and then
SLAM may not be needed if the localization can be done
reliably concerning the known landmarks [2].

Fig.4. Graph SLAM concept. Orange represents true locations and blue
represents the estimated locations.

Fig. 4 illustrates the variables that define the graph which
consist of:

X : the state vector describing the pose of the vehicle at time
k.

Uk : the motion control vector applied the time k-1.

m; : a vector describing the location of the i" fixed landmark.
Z«i: a sensor measurement is taken from the robot to the j
landmark at time k.

Consequently, the objective of a maximum likelihood
approach is to find the optimal configuration of the graph
nodes (x variables) that minimizes F(x) all the observations
z [29]:

F(x) =argmin > vl_fjﬂijvij 5)
(ij)eC

where v;; indicates the residual errors or the difference
between the projected observation Z; and real observation
z;; measured by the robot sensor. These observations z;
includes the position and orientation information. €;
represent the information matrix which is also called the
weight matrix.

The minimization problem is normally solved using the
nonlinear least-squares adjustment using either the Gauss-
Newton or the Levenberg-Marquardt methods. However, for
large-scale problems, this optimization may imply a memory
consumption that grows quadratically in the number of
variables [2].

I1l. SLAM IN 2D AND 3D SPACE DOMAIN

SLAM can also be classified into 2D and 3D SLAM as
described in the following subsections.
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A) 2D SLAM

2D SLAM is three degrees of freedom (3DOF) process,
namely position (X, y) and orientation (yaw). It is based on the
assumption that the robot moves in a plane, thus 2D SLAM
establishes a 2D map of the surrounding area and provides a
2D position and orientation of the robot in this map. The
existence of many 2D SLAM algorithms was a motivation to
study and analyze them to guide the interested researchers in
either improving or innovating their algorithms. For example,
Kimmerle, et al. [34] compared several SLAM algorithms
based on their output trajectories. The availability of ground
truth in the comparison method is not necessary as well as the
analyzed algorithms may use different techniques and sensors.

Different datasets were used in the study in order to
determine the level of generality of each algorithm. Moreover,
they have provided an objective benchmark dataset to help
other researchers in the mapping field in testing and evaluating
their algorithms. A subsequent study on the pros and cons of
the available 2D SLAM algorithms until 2013 has been
conducted by Santos, et al. [35]. The evaluation process is
mainly based on the quality of the output map instead of the
trajectory. They have chosen five 2D LIiDAR SLAM
techniques to be tested under the same conditions. Those
techniques were HectorSLAM, Gmapping, KartoSLAM,
CoreSLAM, and LagoSLAM. All the mentioned techniques
were implemented using the Robot Operating System (ROS).
which is a prominent framework that enables researchers in
the robotic field to execute their algorithms [36]. Several 2D
simulations and real-world tests are conducted for the
evaluation. For the simulation experiments in MRL Arena
(4.57x4.04 m), Gmapping and HectorSLAM perform quite
better than others in generating the map (~0.4 cm error), while
the generated map by CoreSLAM has the highest error (~ 11.8
cm). In the real world MRL Arena, KartoSLAM generates the
map with the lowest error (~1.03 cm) and in contrast to others,
it does not vary too much than its error in the simulation test
(~0.55 cm). Overall, in the real world environment all
techniques provide less accurate results than the virtual
environment.

Google Cartographer [37] is one of the most recent 2D
SLAM-based systems. The Viametris i-MMS system employs
an online 2D SLAM for positioning in indoor environments
[38]. Li, et al. [39] designed 2D SLAM-based navigation
system that utilizes GNSS/IMU integration to navigate
outdoors and IMU/LIDAR integration for indoor areas.
Recently, the 2D LiDAR SLAM-based mobile robot has
achieved success in indoor rescue missions [40].

A) 3D SLAM

After the successful implementations of 2D SLAM in
mapping an environment and localizing the mapping system
in 2D space, many researchers have turned towards study the
applicability of 3D SLAM [41]. One of the main reasons
behind this trend is the significant changes in roll and pitch
values of the mapping system while on the move. 3D SLAM
is six degrees of freedom (6DOF) process, namely position (X,
y, ) and orientation (roll, pitch, yaw). In comparison with 2D
SLAM, it is a more complex and highly computationally
intensive process, but it is more efficient to model the general
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motion of a platform. In case of a limited motion to a 2D
space, 2D SLAM is sufficient for localization, and a
perpendicular sensor is used for mapping in the third
dimension [42]. They have used the horizontal laser range
finder (Sick) to estimate the location within the plane while
the vertical one supplies the system with the needed
information for 3D mapping in the indoor environment.
Weingarten and Siegwart [43] rotated the 2D laser range
finder (Sick) to generate a 3D point cloud of an indoor
environment that feeds 3D SLAM. Some systems that employ
3D SLAM have been designed to explore the 3D space in
some cases like human navigation and rescue operations [44].
Recently, the 3D SLAM becomes indispensable to operate
mobile service robots in unknown environments [45].

IV. SLAM ENHANCEMENT TECHNIQUES

Two enhancement techniques are normally applied to
refine the SLAM performance namely loop closure and
trajectory interpolation.

A) Loop Closure

Similar to the well-known technique used in traversing and
geodetic network adjustment in Geomatics, the last step in
SLAM is to apply a loop closure. This is the final refinement
step to have a globally consistent SLAM solution, particularly
over long trajectories. This is necessary even when using
highly accurate sensors because they are still prone to some
amount of random uncertainty and will lead to a trajectory
drift [46], which in turn, can result in a significant misclosure
at the end of a loop.

Accordingly, loop closure is the process of revisiting the
same stored mapping area by either new image frames or
LiDAR scans and connecting between them by a constraint.
This SLAM front-end step of loop closure will significantly
reduce the accumulated drift in the final estimated map and
robot poses (Fig.5) [4, 29].

A powerful computational approach is required to match
features in the new images or scans concerning all the
previously detected features in real-time which is impractical
and consumes memory especially over long trajectories [4].
Therefore, some techniques like the Bags of Words technique
are initialized to tackle this issue [2].

Fig. 5. Loop closure illustration. Left: before loop closure. Right after loop
closure. [13]

To validate the loop closure, additional geometric
verification steps are needed to determine their quality. In
visual SLAM applications, geometric verification and outlier
rejection are applied using RANSAC [47]. While in laser-
based SLAM approaches, loop closure can be tested by the
goodness of the alignment between the current laser scan point
cloud and the previously scanned point cloud [2]. This can be
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measured by checking the histogram of point cloud normal as
a descriptor for achieving loop closure [33].

B) Continuous robot trajectory interpolation

As described earlier, SLAM is applied using several
sensors onboard the robot like the IMUs, LiDARs, cameras,
odometers, and GNSS receivers/antenna. Accordingly, every
sensor may operate at a different frequency than the other
sensors. One solution is to consider the trajectory of the robot
as a continuous function of time either as a nonparametric
Gaussian method or as a spline function [46].

A common preference is a cubic B-spline [48] where a
sequence of spline time spaced knots can be stored. At every
spline knot, the pose is defined by the three rotations
(w, @, k)and three translations (T, Ty, T 7). The modelling of
e.g. w(t) by a B-spline function is given in Equation (2) [49].

w(t) = Z ay,iBi(t) (6)

where a,,;is the spline coefficient for angle w to be estimated
on interval i.

Then the trajectory is defined at any time by computing
the weighted sum of the four closest knots [46]. Thus, a total
of 10 variables per second is required for the optimization
which will reduce the size of the variables to be estimated and
the trajectory will be smooth without motion distortions

(Fig.6).
V. SLAM SENSOR-BASED TECHNIQUES

SLAM can be classified into two main techniques
concerning the map measuring sensor which is either by using
a camera or a LiDAR. Accordingly, two terminologies are
found: Visual SLAM and LiDAR SLAM.

obstacles

Goal

Fig. 6.Spline smoothing (red) of the robot trajectory.

A) Visual SLAM

The Visual SLAM technique is based on using images
taken from a camera mounted on a robot. The cameras used
can be optical with wide-angle lenses, fisheye lenses, or
panoramic like the ladybug camera [50]. Other camera types
like the RGB-D cameras [51] are also widely used for indoor
mapping applications.

When the Robot is equipped with a single camera, the
SLAM technique is called monocular SLAM where the depth
estimation is challenging. However, using fixed-position
landmarks that can be automatically detected in the images
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like coded targets and the inertial measurement units IMUs
will highly support the visual SLAM technique. When the
IMU is used, the SLAM technique is called visual odometry
which utilizes the motion sensor data derived to estimate a
robot’s change in position over time.

In literature, visual SLAM well-known techniques are
structure from motion (SfM), visual odometry, and bundle
adjustment [26]. It should be noted that visual SLAM can rely
on sparse point cloud features like ORB-SLAM [10, 11] or
rely on dense point cloud features such as DTAM or LSD-
SLAM [26]. The well-known visual SLAM techniques like
ORB-SLAM [11] can be applied using the following steps
(Fig.7) where the first two steps represent the front-end
component.

Map Initialization: based on 2D ORB feature
correspondences in two overlapped image frames, a relative
orientation is applied to estimate the robot (camera) initial
pose. The relative orientation can be applied using the
fundamental matrix or homography. A triangulation is applied
to estimate the initial map of 3D points or landmarks.

Tracking: for each new image frame, apply feature
matching in the new frame to features in the previous
keyframe. Since the matched features have their 3D positions
defined in the previous step, the robot pose is estimated using
resection techniques like the perspective-n-points (PnP)
method [52-54]. The estimated camera pose is refined by
tracking the local map again.

Local Mapping: in this back-end step, the current image
frame is used to build new map points. This is applied by
adjusting the Robot pose and the map 3D points using bundle
adjustment which minimizes the errors of the projected 3D
map points into the current image.

Loop Closure: When a revisited place is detected using
the Bags of Words technique, the loop closure refinement is
applied and all the poses are refined using graph optimization
or bundle adjustment.

Apply Bundle Adjustment
|
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Fig. 7. Monocular visual SLAM technique concept.

Compared to LIDAR SLAM, visual SLAM is a more
preferred approach in terms of cost which uses significantly
less expensive cameras compared to LiDARs. However,
visual SLAM may not be precise as the LIDAR SLAM and
could be slower. Another disadvantage of visual SLAM is
being very sensitive to the changes in the scene illumination
and appearance, and textureless environment. Finally, visual
SLAM has the advantage of better scene coverage than
LiDAR [6] unless multiple LiDARs are used.
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B) LiDAR — Based SLAM

LiDARs (laser scanners) output data is generally 2D or 3D
point cloud data and offers high-precision range
measurements and performs efficiently for SLAM map
construction [26]. The most commonly used scanners are the
2D Hokuyo laser range-finder [55] for indoor mapping [49,
56-58] and the multibeam 3D-LiDAR Velodyne [59] for
indoor and outdoor mapping [16, 60].

Similar to SLAM, another term called LOAM is also used
in literature to indicate for LIDAR odometry and mapping as
a 3D technique [33, 61]. LiDAR-based SLAM has gained
researchers’ attention because of its high accuracy and the
increasing number of open-source implementations,
especially for localization and mapping in dynamic indoor
environments [62].

Generally, LiDAR-based SLAM enables the robot
movement estimation incrementally by registering the
successively scanned point clouds. The estimated traveled
distance along the trajectory is used for localizing the robot
while building the map through the point cloud co-registration
using in most cases the iterative closest point (ICP) algorithm
[63]. Current LiDAR-based SLAM techniques are relying on
derived features out of the point clouds to accomplish the
estimation. Reduced map representations like voxel/grid-
based methods or point sub-sampling, will effectively
decrease the data amount used for the co-registration [18].
Compared to the visual-based SLAM, in this approach, we can
work reliably over the variations in lighting conditions or
seasons by exploiting the geometric structure like planes
(Fig.6) out of the scanned point clouds [7].

On the other hand, the challenge to register the successive
LIiDAR point clouds is caused by the difficulty to find
sufficient correspondences for the co-registration and this may
result in losing the robot path. In Fig.8, the initial robot
trajectory based on INS observations (yellow) supposed to be
refined after the registration, loop closure, and optimization.
However, the trajectory got deviated (blue) because of the
misalignment between the successive point clouds caused by
the insufficient feature correspondences.

Fig. 8. Misaligned LiDAR SLAM.

Furthermore, point cloud co-registration normally entails
pretty demanding computations and then necessitates
optimizing the processes for a fast implementation [21]. In
addition, the geometry of the LiDAR observations should be
strong enough to reliably estimate the robot pose otherwise,
the robot slides in some direction.

Therefore, localization of the robots will highly improve
when fusing other sensor measurements such as wheel
odometry, GNSS, and IMU data [26] and further apply the
loop closure technique. Recently, Karam, et al. [64] have
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developed several strategies for IMU-LIDAR SLAM
integration in which they utilized the IMU measurements to
support LIDAR SLAM in overcoming some problematic
areas. The IMU contribution in their strategies is not limited
to the pose prediction but also the IMU observations
participate in the pose estimation. Their results showed the
ability of the IMU to support the LIDAR SLAM and prevent
the drift in case of insufficient LiDAR observations.

Apply global optimization

L

[ 4
NG
g

Fig. 9. LIDAR SLAM concept using derived planes co-registration.

Even though, it is still challenging in some cases to get an
accurate SLAM result when scanning textures of shiny objects
like the glass leading to an inadequate performance [21].
Finally, LiDARSs are currently expensive instruments and that
makes them unworkable for extensive operations [62].

In Fig.9 a simplified concept for LIDAR SLAM is shown
where the planar features out of the scanned point are derived
and co-registered. Whenever features are revisited, a loop
closure is applied using optimization techniques and then the
map is updated.

Finally, it's worth mentioning the existence of hybrid
SLAM approaches that combine the Visual and LiDAR
SLAM techniques together. Visual LIDAR Odometry and
Mapping (V-LOAM) is such an example of an integrated
technique where the IMU measurements deliver prior data
about the sensor motion to a visual odometry unit, which in
turn delivers prior data to the LIDAR matching unit [7].

VI. MAP REPRESENTATION

As mentioned, SLAM is concerned with the sensor pose
and the map of the surrounding environment and they are
depending on each other during the robot navigation. The map
in SLAM can be represented mostly by a sparse set of
landmarks, dense point clouds, or by volumetric
representation.

A) Sparse map representation: this is the most common map
representation in SLAM by a set of sparse 2D or 3D
landmarks along the trajectory related to distinctive features
in the environment either points, lines, or planes. Then the
SLAM technique is referred to as feature-based
representations which are mostly known in visual SLAM as
the structure from motion technique [2].

The main disadvantage of this sparse representation is the
need to have available distinctive features in the mapping
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environment which might be a problem in poor textured
places.

B) Dense map representation: this is mostly a dense
unstructured point cloud representation which is also used for
obstacle avoidance or rendering. In SLAM, sensors like
stereo cameras, RGB-D cameras, or LiDARs are widely used
with a dense point cloud representation. The main
disadvantage of this dense representation is the need to [2]:
1) Store a large amount of data while they give a low level of
information about the geometry.

2) High-performance computing power in real-time.
Accordingly, one solution is to derive geometric primitives
like planes [49], cylinders, surfels [4], etc. from the point
clouds and then efficiently use them for the registration
between successive scans within the SLAM pipeline.

C) Grid-based map representation: this map spatial-
partitioning representation is applied by defining adjacent
regular geometric primitives either as voxels or 2D grids [2].
The value of each grid cell indicates its state that can be free,
occupied, or unknown (Fig.10) which is based on a predicted
probability and defined as the Occupancy Grid [65]. Hence,
the occupancy value of a grid cell is defined using a
probabilistic method that has as an input estimated
measurement from the robot sensor to the map point (like
distances or angles). Then it is possible to update the grid cell
values whenever a new measurement is achieved using a
Bayesian technique [66]. This updating step of the grid cells'
status will continue while the robot is moving and sensing the
environment. The resulted grid map can be used for obstacle
avoidance, path planning, and pose estimation.
Consequently, this representation has the main advantage of
being accurate and easy to create [66]. Fig.10 illustrates an
example of the 3D grid representation (voxels) of the
environment while a robot is moving inside [67].

Fig. 10. 3D occupancy grid representation. a) 3D occupancy map defined by
blue occupied voxels and green free voxels. b) Top view of a point cloud
superimposed on the derived voxels. ¢) Occupied voxels are shown in blue
[67].
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VII. DEEP LEARNING FOR SLAM

In recent years, research regarding SLAM is applied using
deep learning techniques to replace the traditional visual
odometry approach which is based on geometric processing.

The motivation to use such machine learning techniques is
to keep a good positioning performance in difficult
environments and to overcome the possible inaccurate scale
estimation of visual SLAM [68]. One example is to directly
derive the inter-frame pose between two images captured from
a moving robot.

Moreover, deep learning is used to estimate the six degrees
of freedom (DoF) of a camera (rotation and translation) as
well as estimating the depth distance of the objects in the
captured single images [4, 33, 69]. It is worth mentioning that
most of the early proposed deep learning research on SLAM
was only focused on visual odometry for localization without
mapping which is recently developed to solve the full SLAM
problem [68].

Recently, Sarlin, et al. [70] introduced the new terms of
SuperPoint, SuperGlue, and SuperMap. SuperPoint [71] is
aimed to replace the geometric-based interest points (like
SIFT) with convolutional neural networks CNN feature
points. Thereby, feature points and their descriptors are
computed together without patches and then enable real-time
processing on a GPU. The SuperGlue which is a mix of the
Graph Neural Networks and the optimal transport is aimed to
improve the feature matching by learning. This approach is
promising to successfully achieve matching at extreme wide-
baseline stereo images in real-time Fig.11. Sarlin, et al. [70]
are continuing the work for a further step of the SuperMap to
reach an end-to-end Deep Visual SLAM.

Fig.12 is designed to summarize all the SLAM-related
deep learning techniques applied in recent years to enable the
reader to have an overview of the recent contribution of deep
learning to SLAM.

Supervised Depth Self supervised
Estimation Depth Estimation

Ground truth data Ground truth data
available unavailable

Leaming based
algorithms

optical flow consistency

masking

= adding
real-time use depth normalization
layer

Fig.12. Different research output to apply deep learning for depth estimation
in stereo and monocular modes.

VIII. APPLICATIONS

SLAM is widely used in different applications mainly for
mobile mapping tasks in GNSS denied or degraded
environments like indoor environments, urban canyons, dense
forests, and underwater unmanned missions [4].

Robotic unmanned ground vehicles (UGVs) and
unmanned aerial vehicles (UAVS) represent potential future
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machines that utilized SLAM techniques in different areas
(Fig.13a,13b). As an example in the oil and gas industry, the
robots would be equipped with sensors that can detect natural
gas leaks as well as hazardous substances. This would help to
avoid accidents and to keep employees safe.

Fig.11. SuperPoint+SuperGlue matching result for a challenging case with
two different scales and perspective images [70].

A new generation of car parking autonomous robots using
SLAM was found by Stanley Robotics (Fig.13c) introduced a
parking service in airports that will save passengers time while
also reducing vehicle emissions [72]. The construction and
mining industry also invested in UGVs and UAVs which
include: moving materials, bulldozing, digging trenches,
situational awareness, asset inspection, and excavations
(Fig.13d) [73].

Another SLAM-based UAV is introduced by Emesent
company [74] with its AL2 Hovermap (Fig.13e). AL2
Hovermap efficiently collects the data automatically based on
SLAM techniques in challenging GNSS denied environments
like in underground mining mapping missions. Fig.13b shows
the HUSKY robot vehicle which performs SLAM to help to
predict rock bursts and rock falls [75]. SKEYETECH a fully
autonomous drone for security and safety applications is
shown in Fig.13f. Another autonomous UAV product is found
by Skydio [76] which is designed for real-time 3D mapping,
motion planning, scene understanding, and obstacle
avoidance. Recently, Boston Dynamics released a versatile
Spot robot dog that relies on SLAM to navigate
autonomously. Spot has a 6 DOF arm which gives the ability
to grasp objects and open doors [77, 78]. More recently, the
FARO Focus laser scanner has been attached to Spot for
automated 3D scanning (Fig. 14).

Among many SLAM applications, we summarize the
following fields:

e  Autonomous driving.

e Rescue tasks for high-risk or difficult navigation
environments.

e Deep-sea exploration and mining.

e Augmented reality where virtually rendered objects
need to fit in the real-life 3D environment.

e Virtual reality where users would like to interact
with objects in the virtual environment/gaming.

e Visual surveillance systems.

e Infrastructure inspection and 3D reconstruction.
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IX. CONCLUSIONS

In this paper, a simplified and clear explanation is
introduced about the SLAM technique for the scientific
community as well as nonspecialized readers. Terminologies
like visual odometry, loop closure, 2D SLAM, and pose-graph
optimization are briefly explained with illustrative figures like
in Fig.3, Fig.4, and Fig.9.

Fig.13. a) SLAM for underwater applications using Girona 500 AUV [79].
b) HUSKY robot for measuring deep mines [75]. c) Stan parking robotic
[72]. d) UGV for construction industry [73]. €) Emesent Hovermap [74]. f)
SKEYETECH fully autonomous drone [80].

Fig. 14. The integration of FARO Focus scanner and Spot robot dog [81].

Two main mathematical approaches for solving SLAM
have been presented namely the Extended Kalman Filter and
the pose-graph optimization. The advantages and
disadvantages of both mentioned techniques were indicated.
The contribution of artificial intelligence and deep learning in
predicting scene depth for solving SLAM in challenging
environments is summarized in Fig.12.

Readers of the paper who are interested to know about the
SLAM problem and its major elements regardless of their
scientific specialty are expected to benefit from the overview
given in this paper. For a more advanced and deep
understanding of SLAM, readers are advised to investigate the
several references cited in the paper.
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Noticeably, one of the SLAM problem key solutions is the
loop closure technique which was introduced in surveying and
geodesy science a very long time before adopted in robotics. ,
it is highly recommended for the specialist in the Geomatics
field to focus on the uprising techniques offered by the other
scientific fields in computer science, robotics, etc., and to
contribute to the advancement of SLAM problems and other
uprising problems in autonomous navigation. Furthermore, an
invitation to the academic institutions in surveying and
geodesy fields to upgrade their curriculums and adapt
techniques related to autonomous navigation and artificial
intelligence, etc. as we believe these topics will highly impact
the development of those sciences.
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