Lotus International | ISSN:1124-9064

https://lotusinternational.ac/

A Technique for Regression Testing of Object Oriented Software

Vedpal® and Naresh Chauhan?
1Department of Information Technology and Computer Applications

2Department of Computer Engineering
YMCA University of Science and Technology, Faridabad, Haryana, India

Abstract - The main challenge in testing an OOS is that there
are large number of test cases which are not feasible to execute
all of them within constrained time and budget. This paper
proposes some factors which can be used to prioritize the test
cases in order to have an effective testing. The considered
factors are based on the testing history and structured analysis
of the software. These factors may be nature of bug, capability
of a test case, execution time, business impact, coverage of code
in terms of classes(old and new classes), etc. Every factor has
been assigned a positive weight which shows the criticality of
the factor and ability to introduce the errors in the software.
The prioritized set of test cases thus obtained is helpful to
discover maximum bugs as early as possible.

Keywords: Regression testing, test case prioritization, history
based regression testing

I. INTRODUCTION

Software refinement and maintenance is very expensive
process. During the life cycle of software it may be
modified many times due to customer requirements,
enhancement of the current feature, adding new feature etc.
The software is also get modified if any bug occur in the
software due to removal of a bug in the software. Every
time new modification is introduced in the software, there is
higher probability of the other components of the software
being affected. So respective to any modification in
software testers have to ensure that the modified part of the
software does not put any critical impact on the other part of
the software.

Modification and bug fixing exist in every phase of
software. With every change, whether it is a minor change
or critical change there is need to check the software again
to validate that there has been no adverse impact on the
other working part of the software. Software is put under
regression testing if any one of the following reason occurs.

Any part of the software fail to meet the requirement
Adding the new functionality in the software.
Refining the current functionality of the software
After the bug fixed in the software.

Hpwnh e

To ensure that modification of the current working
component and adding new component in the software do
not adversely effect on the software a selective retesting of
the system is performed. The process of retesting the
modified and updated software is called the regression

Volume 25 Issue 7 (2025)

testing. But due to some constraints like time, resource,
budget, business impact, it’s becoming very challenging
task to retest the software. To perform a regression testing
the software has the large number of test suit. It is very
expensive to execute all test cases to test the software so the
test cases should be executed in an order such that
maximum faults are detected by earlier test cases by
consuming less time, and cost.

The process of ordering the test cases with the intention to
find the maximum test cases is called test case
prioritization. In this paper a technique for regression test
case prioritization for object oriented software is presented.
The presented approach orders the test cases on the basis of
some factors which are related to the past testing history of
the software which are going to be retested again to ensure
the bug free software after incorporating modifications.
Every factor has been assigned a positive weight which
shows the contribution of the factor to discover the higher
severity faults. The weight is assigned by the developer,
tester, and project manager on the basis of their experience
in relevant field. To validate, the APFD value of the
proposed approach is compared with others existing and
optimized approaches

Il. RELATED WORK

Ahlam Ansari et al., proposed [1] an approach for
regression test case prioritization approach using ant colony
algorithm. The approach firstly takes the test cases which
have covered the maximum faults followed by the selection
of test cases covering the remaining faults.

Saloni Ghai et al presented [2] an approach for regression
test case prioritization using hill climbing. The proposed
technique traversesthe DFD of the software and determines
the importance of the functions. These function’s
importance are used by the hill climbing approach to
prioritize the test cases.

Wenhao et al.,combined [3] the algorithm of clustering
and scheduling with the aim to enhance the effectiveness
of the regression testing. They used the clustering algorithm
to merge the test cases in cluster having the similar
properties and scheduling algorithm to assign the priority of
execution to the test cases. The execution frequency is

Page No:19

Lotus International | ISSN:1124-9064

assigned on the basis of the predictive fault detection rate,
waiting time in candidate set to detect the all faults.

Samia Jafrin et al., used [4] the rate of severity associated
with the fault to prioritize the regression test cases . They
found that the latest research did not addressed the
dependency among the faults. They considered the faults
which are fully or partially dependent on the other faults.
They proposed algorithm that distinguished the
improvement between the independent and fully and
partially dependent faults.

Wasiur Rhmann et al., proposed [5] the fuzzy logic based
test case prioritization for regression testing. The diagram
of state machine is used to capture the system behavior and
the information related to the risk associated with states.
After calculating the value of risk exposure the state
diagram is converted in to the weighted extended finite state
machine(WEFSM).

The WEFSM is used to generate the different test paths by
traversing in the depth first manner. For each generated path
the maximum and minimum risk exposure value is
calculated which are further used by fuzzy expert system to
categorized the test cases.

Soumen Nayak et al., prioritized[6] the regression test cases
using the four factors. These factors are the rate of fault
detection, number of faults detected, test case ability of the
risk detection and the test case effectiveness. They
determine the effective test case ranking by calculating the
sum of the value of the four considered factors.

Sapna P G et al.,, proposed [7]black box approach for
generating the test cases for the regression testing. The
UML and activity diagrams have been used to model the
requirements and elaborated the functionality. They used
the steiner tree algorithm with the objective to generate the
minimal test set which are used to check functionality.

Bo Jiang et al., proposed [8]input based randomized test
case prioritization technique. They introduceda novel family
of input based local beam search adaptive randomized
technique.They create adaptive based randomized
exploration with the randomized test strategy. They
addressed the issues regarding the cost efficiency by a novel
design on the size of randomized candidate set with the
local beam search.

Almanda Schwartz et al., presented [9] the technique to
investigate and determine the most cost effective technique
to perform regression testing. The technique is choosing for
a particular regression testing session. They also presented
the comparative study adaptive test prioritization technique
existed till date. The outcome of the studies indicates the
proposed approach is very effective for cost saving in
regression testing as compared to other existing regression
testing technique.

Volume 25 Issue 7 (2025)

https://lotusinternational.ac/

Yuen Tak Yu et al., proposed [10] a fault based test suit
prioritization for specification — based testing. They used
the theoretical knowledge ability of detection of faults and
relationship between the test cases. The test cases are
generated on the basis of the faults in fault model.The
experimental result of the proposed shows that all faults are
detected by executing only about 72 % of the prioritized test
suits.

Erik Rogstad et al., presented [11] an approach for
selection of the black box regression test cases for database
application. They partition the input domain of testing
system by using classification tree model. They select the
test cases from the partition on the basis of similarity
between the test cases. The experimented results show that
presented approach provides the higher fault detection rate.

Alireza Khalilian et al., used [12] the historical data of test
cases to prioritize them. They compute the priority of the
test cases by computing the test case prioritization equation.
For computing the equation the historical information of test
cases with constant coefficient is used.

Yu —Chi Huang et al., proposed [13] a cost cognizant test
case prioritization technique using historical record of test
cases. They used genetic algorithm to order the test cases on
the basis of the gathered historical data of latest regression
testing.

Breno Miranda et al., proposed [14]a scope- aided
technique to prioritize, selection and minimization of the
test cases of white box testing. They used the reuse context
to reorder and selecting the test cases.By critically
reviewing the existed work it has been observed that a lot of
work has been done in the regression testing but still the
researcher hopesfor effective technique. The researchers
used the various algorithms like ant colony, hill climbing
etc. Some researchers have taken some factors related to the
past history of testing to order the test cases. But they don’t
use the efficiency and capability of a particular factor to
detect the critical and maximum bug as earlier as possible.
In this paper a novel technique for object oriented software
is presented.

I1l. PROPOSED WORK

The proposed approach prioritizes the regression test cases
on the basis of some factors related to the past testing
history and coverage of the code in term of classes of the
software which is going to be retested after incorporating
some modifications in it. All the considered factors have
been shown in the tablel. All the factors have been assigned
a positive weight which shows the capability of the test
cases to discover the maximum fault by consuming less
time and cost. These factors may be considered for the
prioritization factor for the regression testing of the
software. The value of the considered factors is determined
by using the information of past history of the test cases.

Page No:20

Lotus International | ISSN:1124-9064

TABLE | PRIORITIZATION KEY OF TEST CASES

S. No. Factor Name Factor Weight
1 Severity of Bug .25
2 Capability of Detecting the Bug 2
3 Coverage of impacted code 15
4 Impact on business 3
6 Execution Time

The test cases are thus prioritized on the basis of a value
known as regression test case prioritization value (RTCPV)
which is calculated by the following formula

n
RTCPV = ¥ TFVij * FWj 1)
1
Where TFV is the estimated value of the j™ factor and FW is
factor weight of j™ factor for it test case.

In regression test cases if the test cases are new then it is
assigned the highest priority because it is going to be
executed first time and has the capability of detecting the
maximum faults. It may be possible that new test cases are
more than one. In such type of dilemma the newly test cases
are prioritized on the basis of coverage of modified classes
and coverage of new classes. The overall process of test
case prioritization is shown in Figurel, which is being a
described further in subsequent sections.

Discoverad Bugs

Bug Classifier

Business Analysis

h 2

Saverity of bug

Capabiity of Detecting
Coverage of code
the bug

Business impact ‘ Execution Time

New Test Cases

Calculation of RTCPV of Each
testcases

Ordared old tast cases.
Prioritized test Cases.

Test Case Repasitory

Ordered new test

s

Fig. 1 Overview of Proposed Approach

IV. THE PRIORITIZATION FACTORS
CONSIDERED IN THE PRESENTED APPROACH

Severity of Bug: This factor uses the classification of the
bug on the basis of the impact on the software. On the bugs

Volume 25 Issue 7 (2025)

https://lotusinternational.ac/

are classified in the four categories. These categories are
[15] critical bug, major bug, medium bug and minor bug.
Here on the basis of the past discovery of the bugs by test
cases a scaling of bugs (1-10) may be given as below

Value =10 is all discovered bugs are critical

Value = 8- 9 detected bugs are critical and major, medium
and minor bugs

Value =7 if all detected bugs are major and medium
Value =5 - 6 if the all bugs are major bugs

Value = 4 if the bugs are medium and minor

Value = 2-3 if the all bugs are medium

Value = 1 of the bugs are minor bugs

Capability of Detecting the Bug (CDB): This [6] factor
shows the caliber of the test case to detect the maximum
bugs by executing the test cases. The value of this can be
estimated by the following formula

CDB = (TBC/TDB) *10)

Where TDB is the total detected bug by all test cases and
TBC is number of bugs detected by the current test cases.

Coverage of Code(CC): This factor shows the coverage of
the code in terms of classes (modified and unmodified) and
methods by the test cases. The value of this factor is based
on the basis of coverage of the modified and updated
classes. This value can be calculated by the following
formula

CC = (TCC/TC)*10 3)

Where TC is Total classes in the software and TCC is
number of covered classes by the test cases.

On the basis of this formula the value between 0 to 10 is
assigned.

Business Impact: This factor shows that if the particular
function being covered by the test cases is not executed
successfully then how much it puts impact on the business
of customer. On the basis of the business impact by test
cases the value between 0 to 10 is assigned.

Execution Time (ET): This factor shows the time taken by
the test case to execute the target functionality. The value
of this factor is assigned on the basis of the formula 4

ET =(PT/TT) €]

Where PT is execution time ith test case , TT is the total
time taken in executing all test cases and ET is the
estimated value of execution time of the particular test cases

V. RESULTS AND ANALYSIS

For the experimental applicability and analysis of the
proposed approach, it has been applied on a case study [16]
implemented in Java. To check effectiveness of the
technique to detect rate of fault detection, intentionally

Page No:21

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

some faults have been added in the considered case study TABLE Il TESTING HISTORY OF CONSIDER CASE STUDY
and the bugs are detected manually. The outcome of the i
case study is given below: Determined o
Test value of Nature of Execution time of
Case Study: In this case study the presented approach is case g?tgﬂg Bug test case (cs)
appll_ed on a practical problem of Banking. In j[he TCL 1 Minor=1 >
considered example [16] the user can perform the operation —
. . . . TC2 2 MajOI’ =1 3
of deposit, withdrawal, calculate interest and display the minor=1 :
account information on saving account and current TC3 1 major=1 25
accounts. TC4 1 Minor=1 2
The Table Il shows the test case history of the program TGS ! Mz_ijor -1 25
before applying the modification TC6 2 Minor=2 25
TC7 2 Major=2 3
From the past testing history of the case study the total 16 TC8) Major=1 35
bugs are discovered by executing the 10 test cases. Now by M?d.'umzl '
using the above history the table3 shows the values of TC9 3 C,\;I';}ger“:_zl 35
varlous_ factors_ which are used to prioritize the test cases for TC10 1 Medium=1 >
regression testing.
TABLE Il DETERMINED VALUE OF CONSIDERED FACTORS
Test Determined Capability of | Executiontime Impact on Coverage of
case value of Detecting of test case b ps'ness code by test Estimated RTCPV
Severity of Bug Bug(CDB) (ET) usi cases (CC)
e N (1*.25)
TC1 1 (1/16)*10 (:2/2.65)*10 2 (4/5)10=8 | +(0..625% 2)+(.75% 1)+(2* 3)+(8*.15) =
62.5 =0.75 295
TC2 7 .80 113 8 8 5.623
TC3 5 625 .94 8 8 5.069
TC4 1 625 75 9 8 4.35
TC5 5 625 94 5 8 4.169
TC6 1 80 94 2 8 2.304
TC7 5 .80 113 8 8 5.122
TC8 7 .80 132 9 8 5.942
TC9 9 1.87 132 9 8 6.656
TC10 3 625 0.75 7 8 4.249

The ordered test cases are TC9, TC8, TC2, TC7,TC3, TC4, TC10,TC5,TC6,TC1. The Table IV shows the order of the test
cases after applying the random, reverse, Nayak et al. [6] and the proposed approach

TABLE IV TEST CASE ORDER OF THE VARIOUS APPROACHES AND PROPOSED APPROACH

Random | Reverse Nayak Proposed

S.No. | Noorder Order Order apprz)ach appproch
1 TC1 TC5 TC10 TC9 TC9
2 TC2 TC4 TC9 TC2 TC8
3 TC3 TC10 TC8 TC7 TC2
4 TC4 TC1 TC7 TC8 TC7
5 TC5 TC8 TC6 TC6 TC3
6 TC6 TC9 TC5 TC5 TC4
7 TC7 TC3 TC4 TC3 TC10
8 TC8 TC6 TC3 TC10 TC5
9 TC9 TC7 TC2 TC1 TC6
10 TC10 TC2 TC1 TC4 TC1

Volume 25 Issue 7 (2025) Page No:22

Lotus International | ISSN:1124-9064

The Table V shows the faults detected by the test cases.

TABLE V FAULTS DETECTED BY TEST CASES

T
C
2

T
C
3

TC
4

T
Cc
5

TC
7

1
C
8

1
C
9

TC
10

F1

0

o O -

P2 *
F3 *
F4 *
F5 =
F6 *
F7 *
F8 *
F9 *
FI10 *
FI1 *
F12
F13 *
F14 *
F15 *

The APFD of unordered, random order, reverse order,
nayak approach and the proposed approach is shown in
figure 2 to figure 6

Fig. 2 APFD Graph of the unordered test cases

Reverse Order of Test Cases

B APFD =54.3%

T T3 T5 T7 719

Fig. 3 APFD Graph of the test cases in reverse ordered

Random order of Test Cases
20 -

m APFD =51%

Fig. 4 APFD Graph of the test cases in Random Ordered

Volume 25 Issue 7 (2025)

https://lotusinternational.ac/

Nayak Approach
20
15

10
B APGD =59.6%

5

0

T T3 T5 T7 719

Fig. 5 APFD Graph of the test cases ordered by Nayak et. al., Approach

Proposed Approach

20
15
10

B APFD = 63.6%
5

0
L 73 715 717 719

Fig. 6 APFD Graph of the test cases ordered by proposed approach

VI. COMPARATIVE STUDY OF THE PROPOSED
APPROACH

The figure 7 and table 6 shows that the proposed approach
is to discover the maximum faults earlier as compare to the
other approaches. The result of the proposed approach is
very promising and helps to reduce the testing cost of the
software.

16 _
- "4 == Random
Approach
21 pp
E 10 == S. Nayak et al.
s g Approach
g
g 6 == Proposed
8 1 Approach
2 —3— Reverse order
0
g =
PERRERRE No Order
Test Case Executed

Fig. 7 APFD Graph of Various approaches

Page No:23

Lotus International | ISSN:1124-9064

TABLE VI APFD VALUE OF THE PROPOSED APPROACH AND

OTHERS APPROACHES
S. No. Approach applied Percentage of APFD
1 Unordered 50%
2 Reverse Ordered 54.3%
3 Random Ordered 51%
4 Nayak Approach ordered 59.6%
5 Proposed Approach 63.6%

VII. CONCLUSION

In this paper a novel technique for test cases prioritization
for the regression testing of the software is presented. The
test cases are prioritized on the basis of the five factors.
Every considered factor has been assigned a positive weight
which shows the ability of the factor to discover the faults.
The weight is assigned by the developers, testers and
experts on the basis of their experience and skills. The value
of considered factors is calculated by analyzing the past
testing history of the software and the coverage of the code
by the particular test case. For experimental validation and
to check the effectiveness of the proposed approach it has
been applied on software and the obtained APFD result is
compared with the similar existed latest approach. The
comparative study shows the effectiveness of the proposed
approach over the others similar approaches.

REFERENCES

[1] N. Chauhan, “Software Testing Principles and Practices”, Oxford
University Press, 2010.

[2] Y. Tak Yu, M. Fai Lau, “Fault-based test suite prioritization for
specification-based testing”, Information and Software Technology,
Vol. 54, pp. 179-202, 2012.

[3] M. Abdollahi Khalilian and Y. Fazlalizadeh Azgomi, “An improved
method for test case prioritization by incorporatinghistorical test case
data”, Science of Computer Programming, Vol. 78, pp. 93-116,
2012.

Volume 25 Issue 7 (2025)

https://lotusinternational.ac/

[4] Y.Chi Huange, K.Li Penga, C.Yu Huang, “A history-based cost-
cognizant test case prioritization technique in regression Testing”,
The Journal of Systems and Software, Vol. 85, pp. 626— 637, 2012.

[5] E. Rogstad, L. Briand and R. Torkar, “Test case selection for black-
box regression testing of databaseApplications”, Information and
Software Technology, 2013.

[6] S. Malhotra and S. Chaudhary, “Programming in Java”, Oxford
University Press, 2014.

[71 P G Sapna and A. Balakrishnan, “An Approach for Generating
Minimal Test Cases for RegressionTesting”, Procedia Computer
Science, Vol. 47, pp. 188 — 196, 2015.

[8] W.K. Jianga Chan, “Input-based adaptive randomized test case
prioritization: A local beam search approach”, Journal of Systems and
Software, Vol. 105, pp. 91-106, July 2015.

[9] S. Jafrin, D. Nandi and S. Mahmood, “Test Case Prioritization based
on Fault Dependency” I.J. Modern Education and Computer Science,
Vol. 4, pp. 33-45, 2016. [Online] Available: http://www.mecs-
press.org/DOI:10.5815/ijmecs.2016.04.05

[10] Ansari, A. Khan and K. Mukadam, “Optimized Regression Test using
Test Case Prioritization” 7th International Conference on
Communication, Computing and Virtualization 2016, Procedia
Computer Science, Vol. 79, pp. 152 — 160, 2016.

[11] A. Bertolino Miranda, “ Scope-aided test prioritization, selection and
minimization for software reuse”, The Journal of Systems and
Software, pp. 1-22, 2016.

[12] S. Ghai and S. Kaur, “A Hill-Climbing Approach for Test Case
Prioritization”, International Journal of Software Engineering and
Its Applications, Vol. 11, No. 3, pp. 13-20, 2017. [Online] Available:
http://dx.doi.org/10.14257/ijseia.2017.11.3.02

[13] W. FU, H. YU, G. FAN, and X. JI, “Coverage-Based Clustering and
Scheduling Approach for Test CasePrioritization”, IEICE TRANS.
INF. & SYST., Vol. E100-D, No.6, June 2017.

[14] W. Rhmann and V. Saxena, “ Fuzzy Expert System Based Test Cases
Prioritization from UML State Machine Diagram using Risk
Information”, 1.J. Mathematical Sciences and Computing, Vol. 1, pp.
17-27, 2017. [Online] Available: http://www.mecs-press.net DOI:
10.5815/ijmsc.2017.01.02

[15] S. Nayak, C. Kumar and S. Tripathi, “Enhancing Efficiency of the
Test Case Prioritization Techniqueby Improving the Rate of Fault
Detection”, Arab J Sci Eng, DOI 10.1007/513369-017-2466-6

[16] H. Do Schwartz, “Cost-effective Regression Testingthrough Adaptive
Test Prioritization Strategies”, The Journal of Systems & Software,
S0164-1212(16)00016-9DOI: 10.1016/j.js5.2016.01.018 Reference:
JSS 9661.

Page No:24

http://dx.doi.org/10.14257/ijseia.2017.11.3.02
http://www.mecs-press.net/

