

A Technique for Regression Testing of Object Oriented Software

Vedpal1 and Naresh Chauhan2
1
Department of Information Technology and Computer Applications

2Department of Computer Engineering

YMCA University of Science and Technology, Faridabad, Haryana, India

Abstract - The main challenge in testing an OOS is that there

are large number of test cases which are not feasible to execute

all of them within constrained time and budget. This paper

proposes some factors which can be used to prioritize the test

cases in order to have an effective testing. The considered

factors are based on the testing history and structured analysis

of the software. These factors may be nature of bug, capability

of a test case, execution time, business impact, coverage of code

in terms of classes(old and new classes), etc. Every factor has

been assigned a positive weight which shows the criticality of

the factor and ability to introduce the errors in the software.

The prioritized set of test cases thus obtained is helpful to

discover maximum bugs as early as possible.

Keywords: Regression testing, test case prioritization, history

based regression testing

I. INTRODUCTION

Software refinement and maintenance is very expensive

process. During the life cycle of software it may be

modified many times due to customer requirements,

enhancement of the current feature, adding new feature etc.

The software is also get modified if any bug occur in the

software due to removal of a bug in the software. Every

time new modification is introduced in the software, there is

higher probability of the other components of the software

being affected. So respective to any modification in

software testers have to ensure that the modified part of the

software does not put any critical impact on the other part of

the software.

Modification and bug fixing exist in every phase of

software. With every change, whether it is a minor change

or critical change there is need to check the software again

to validate that there has been no adverse impact on the

other working part of the software. Software is put under

regression testing if any one of the following reason occurs.

1. Any part of the software fail to meet the requirement

2. Adding the new functionality in the software.

3. Refining the current functionality of the software

4. After the bug fixed in the software.

To ensure that modification of the current working

component and adding new component in the software do

not adversely effect on the software a selective retesting of

the system is performed. The process of retesting the

modified and updated software is called the regression

testing. But due to some constraints like time, resource,

budget, business impact, it’s becoming very challenging

task to retest the software. To perform a regression testing

the software has the large number of test suit. It is very

expensive to execute all test cases to test the software so the

test cases should be executed in an order such that

maximum faults are detected by earlier test cases by

consuming less time, and cost.

The process of ordering the test cases with the intention to

find the maximum test cases is called test case

prioritization. In this paper a technique for regression test

case prioritization for object oriented software is presented.

The presented approach orders the test cases on the basis of

some factors which are related to the past testing history of

the software which are going to be retested again to ensure

the bug free software after incorporating modifications.

Every factor has been assigned a positive weight which

shows the contribution of the factor to discover the higher

severity faults. The weight is assigned by the developer,

tester, and project manager on the basis of their experience

in relevant field. To validate, the APFD value of the

proposed approach is compared with others existing and

optimized approaches

II. RELATED WORK

Ahlam Ansari et al., proposed [1] an approach for

regression test case prioritization approach using ant colony

algorithm. The approach firstly takes the test cases which

have covered the maximum faults followed by the selection

of test cases covering the remaining faults.

Saloni Ghai et al presented [2] an approach for regression

test case prioritization using hill climbing. The proposed

technique traversesthe DFD of the software and determines

the importance of the functions. These function’s

importance are used by the hill climbing approach to

prioritize the test cases.

Wenhao et al.,combined [3] the algorithm of clustering

and scheduling with the aim to enhance the effectiveness

of the regression testing. They used the clustering algorithm

to merge the test cases in cluster having the similar

properties and scheduling algorithm to assign the priority of

execution to the test cases. The execution frequency is

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 7 (2025) Page No:19

assigned on the basis of the predictive fault detection rate,

waiting time in candidate set to detect the all faults.

Samia Jafrin et al., used [4] the rate of severity associated

with the fault to prioritize the regression test cases . They

found that the latest research did not addressed the

dependency among the faults. They considered the faults

which are fully or partially dependent on the other faults.

They proposed algorithm that distinguished the

improvement between the independent and fully and

partially dependent faults.

Wasiur Rhmann et al., proposed [5] the fuzzy logic based

test case prioritization for regression testing. The diagram

of state machine is used to capture the system behavior and

the information related to the risk associated with states.

After calculating the value of risk exposure the state

diagram is converted in to the weighted extended finite state

machine(WEFSM).

The WEFSM is used to generate the different test paths by

traversing in the depth first manner. For each generated path

the maximum and minimum risk exposure value is

calculated which are further used by fuzzy expert system to

categorized the test cases.

Soumen Nayak et al., prioritized[6] the regression test cases

using the four factors. These factors are the rate of fault

detection, number of faults detected, test case ability of the

risk detection and the test case effectiveness. They

determine the effective test case ranking by calculating the

sum of the value of the four considered factors.

Sapna P G et al., proposed [7]black box approach for

generating the test cases for the regression testing. The

UML and activity diagrams have been used to model the

requirements and elaborated the functionality. They used

the steiner tree algorithm with the objective to generate the

minimal test set which are used to check functionality.

Bo Jiang et al., proposed [8]input based randomized test

case prioritization technique. They introduceda novel family

of input based local beam search adaptive randomized

technique.They create adaptive based randomized

exploration with the randomized test strategy. They

addressed the issues regarding the cost efficiency by a novel

design on the size of randomized candidate set with the

local beam search.

Almanda Schwartz et al., presented [9] the technique to

investigate and determine the most cost effective technique

to perform regression testing. The technique is choosing for

a particular regression testing session. They also presented

the comparative study adaptive test prioritization technique

existed till date. The outcome of the studies indicates the

proposed approach is very effective for cost saving in

regression testing as compared to other existing regression

testing technique.

Yuen Tak Yu et al., proposed [10] a fault based test suit

prioritization for specification – based testing. They used

the theoretical knowledge ability of detection of faults and

relationship between the test cases. The test cases are

generated on the basis of the faults in fault model.The

experimental result of the proposed shows that all faults are

detected by executing only about 72 % of the prioritized test

suits.

Erik Rogstad et al., presented [11] an approach for

selection of the black box regression test cases for database

application. They partition the input domain of testing

system by using classification tree model. They select the

test cases from the partition on the basis of similarity

between the test cases. The experimented results show that

presented approach provides the higher fault detection rate.

Alireza Khalilian et al., used [12] the historical data of test

cases to prioritize them. They compute the priority of the

test cases by computing the test case prioritization equation.

For computing the equation the historical information of test

cases with constant coefficient is used.

Yu –Chi Huang et al., proposed [13] a cost cognizant test

case prioritization technique using historical record of test

cases. They used genetic algorithm to order the test cases on

the basis of the gathered historical data of latest regression

testing.

Breno Miranda et al., proposed [14]a scope- aided

technique to prioritize, selection and minimization of the

test cases of white box testing. They used the reuse context

to reorder and selecting the test cases.By critically

reviewing the existed work it has been observed that a lot of

work has been done in the regression testing but still the

researcher hopesfor effective technique. The researchers

used the various algorithms like ant colony, hill climbing

etc. Some researchers have taken some factors related to the

past history of testing to order the test cases. But they don’t

use the efficiency and capability of a particular factor to

detect the critical and maximum bug as earlier as possible.

In this paper a novel technique for object oriented software

is presented.

III. PROPOSED WORK

The proposed approach prioritizes the regression test cases

on the basis of some factors related to the past testing

history and coverage of the code in term of classes of the

software which is going to be retested after incorporating

some modifications in it. All the considered factors have

been shown in the table1. All the factors have been assigned

a positive weight which shows the capability of the test

cases to discover the maximum fault by consuming less

time and cost. These factors may be considered for the

prioritization factor for the regression testing of the

software. The value of the considered factors is determined

by using the information of past history of the test cases.

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 7 (2025) Page No:20

TABLE I PRIORITIZATION KEY OF TEST CASES

S. No. Factor Name Factor Weight

1 Severity of Bug .25

2 Capability of Detecting the Bug .2

3 Coverage of impacted code .15

4 Impact on business .3

6 Execution Time .1

The test cases are thus prioritized on the basis of a value

known as regression test case prioritization value (RTCPV)

which is calculated by the following formula

n

RTCPV = ∑ TFVij * FWj (1)

1

Where TFV is the estimated value of the jth factor and FW is

factor weight of jth factor for ith test case.

In regression test cases if the test cases are new then it is

assigned the highest priority because it is going to be

executed first time and has the capability of detecting the

maximum faults. It may be possible that new test cases are

more than one. In such type of dilemma the newly test cases

are prioritized on the basis of coverage of modified classes

and coverage of new classes. The overall process of test

case prioritization is shown in Figure1, which is being a

described further in subsequent sections.

Fig. 1 Overview of Proposed Approach

IV. THE PRIORITIZATION FACTORS

CONSIDERED IN THE PRESENTED APPROACH

Severity of Bug: This factor uses the classification of the

bug on the basis of the impact on the software. On the bugs

are classified in the four categories. These categories are

[15] critical bug, major bug, medium bug and minor bug.

Here on the basis of the past discovery of the bugs by test

cases a scaling of bugs (1-10) may be given as below

Value = 10 is all discovered bugs are critical

Value = 8- 9 detected bugs are critical and major, medium

and minor bugs

Value = 7 if all detected bugs are major and medium

Value = 5 - 6 if the all bugs are major bugs

Value = 4 if the bugs are medium and minor

Value = 2-3 if the all bugs are medium

Value = 1 of the bugs are minor bugs

Capability of Detecting the Bug (CDB): This [6] factor

shows the caliber of the test case to detect the maximum

bugs by executing the test cases. The value of this can be

estimated by the following formula

CDB = (TBC/TDB) *10 (2)

Where TDB is the total detected bug by all test cases and

TBC is number of bugs detected by the current test cases.

Coverage of Code(CC): This factor shows the coverage of

the code in terms of classes (modified and unmodified) and

methods by the test cases. The value of this factor is based

on the basis of coverage of the modified and updated

classes. This value can be calculated by the following

formula

CC = (TCC/TC)*10 (3)

Where TC is Total classes in the software and TCC is

number of covered classes by the test cases.

On the basis of this formula the value between 0 to 10 is

assigned.

Business Impact: This factor shows that if the particular

function being covered by the test cases is not executed

successfully then how much it puts impact on the business

of customer. On the basis of the business impact by test

cases the value between 0 to 10 is assigned.

Execution Time (ET): This factor shows the time taken by

the test case to execute the target functionality. The value

of this factor is assigned on the basis of the formula 4

ET = (PT/TT) (4)

Where PT is execution time ith test case , TT is the total

time taken in executing all test cases and ET is the

estimated value of execution time of the particular test cases

V. RESULTS AND ANALYSIS

For the experimental applicability and analysis of the

proposed approach, it has been applied on a case study [16]

implemented in Java. To check effectiveness of the

technique to detect rate of fault detection, intentionally

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 7 (2025) Page No:21

some faults have been added in the considered case study

and the bugs are detected manually. The outcome of the

case study is given below:

Case Study: In this case study the presented approach is

applied on a practical problem of Banking. In the

considered example [16] the user can perform the operation

of deposit, withdrawal, calculate interest and display the

account information on saving account and current

accounts.

The Table II shows the test case history of the program

before applying the modification

From the past testing history of the case study the total 16

bugs are discovered by executing the 10 test cases. Now by

using the above history the table3 shows the values of

various factors which are used to prioritize the test cases for

regression testing.

TABLE II TESTING HISTORY OF CONSIDER CASE STUDY

Test

case

Determined

value of

nature
of Bug

Nature of

Bug

Execution time of

test case (cs)

TC1 1 Minor=1 .2

TC2 2
Major =1
minor=1

.3

TC3 1 major=1 .25

TC4 1 Minor=1 .2

TC5 1 Major =1 .25

TC6 2 Minor=2 .25

TC7 2 Major=2 .3

TC8 2
Major=1

Medium=1
.35

TC9 3
Critical =1
Major =2

.35

TC10 1 Medium=1 .2

TABLE III DETERMINED VALUE OF CONSIDERED FACTORS

Test

case

Determined

value of
Severity of Bug

Capability of

Detecting
Bug(CDB)

Execution time

of test case
(ET)

Impact on

business

Coverage of

code by test
cases (CC)

Estimated RTCPV

TC1 1
(1/16)*10=

62.5
(.2/2.65)*10

=0.75
2 (4/5)*10 =8

(1*.25)

+(0..625*.2)+(.75*.1)+(2*.3)+(8*.15) =

2.25

TC2 7 .80 1.13 8 8 5.623

TC3 5 .625 .94 8 8 5.069

TC4 1 .625 .75 9 8 4.35

TC5 5 .625 .94 5 8 4.169

TC6 1 .80 .94 2 8 2.304

TC7 5 .80 1.13 8 8 5.122

TC8 7 .80 1.32 9 8 5.942

TC9 9 1.87 1.32 9 8 6.656

TC10 3 .625 0.75 7 8 4.249

The ordered test cases are TC9, TC8, TC2, TC7,TC3, TC4, TC10,TC5,TC6,TC1. The Table IV shows the order of the test

cases after applying the random, reverse, Nayak et al. [6] and the proposed approach

TABLE IV TEST CASE ORDER OF THE VARIOUS APPROACHES AND PROPOSED APPROACH

S. No. No order
Random

Order

Reverse

Order

Nayak

approach

Proposed

approch

1 TC1 TC5 TC10 TC9 TC9

2 TC2 TC4 TC9 TC2 TC8

3 TC3 TC10 TC8 TC7 TC2

4 TC4 TC1 TC7 TC8 TC7

5 TC5 TC8 TC6 TC6 TC3

6 TC6 TC9 TC5 TC5 TC4

7 TC7 TC3 TC4 TC3 TC10

8 TC8 TC6 TC3 TC10 TC5

9 TC9 TC7 TC2 TC1 TC6

10 TC10 TC2 TC1 TC4 TC1

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 7 (2025) Page No:22

Reverse Order of Test Cases

20

15

10
APFD = 54.3%

5

0

T1 T3 T5 T7 T9

Random order of Test Cases
20

15

10

APFD = 51%
5

0

T1 T3 T5 T7 T9

Nayak Approach

20

15

10
APGD = 59.6%

5

0

T1 T3 T5 T7 T9

Proposed Approach

20

15

10
APFD = 63.6%

5

0

T1 T3 T5 T7 T9

The Table V shows the faults detected by the test cases.

TABLE V FAULTS DETECTED BY TEST CASES

 T

C
1

T

C
2

T

C
3

TC

4

T

C
5

T

C
6

TC

7

T

C
8

T

C
9

TC

10

F1 * *

F2 *

F3 *

F4 *

F5 * *

F6 *

F7 *

F8 *

F9 *

F10 *

F11 *

F12 *

F13 *

F14 *

F15 *

The APFD of unordered, random order, reverse order,

nayak approach and the proposed approach is shown in

figure 2 to figure 6

Fig. 2 APFD Graph of the unordered test cases

Fig. 3 APFD Graph of the test cases in reverse ordered

Fig. 4 APFD Graph of the test cases in Random Ordered

Fig. 5 APFD Graph of the test cases ordered by Nayak et. al., Approach

Fig. 6 APFD Graph of the test cases ordered by proposed approach

VI. COMPARATIVE STUDY OF THE PROPOSED

APPROACH

The figure 7 and table 6 shows that the proposed approach

is to discover the maximum faults earlier as compare to the

other approaches. The result of the proposed approach is

very promising and helps to reduce the testing cost of the

software.

Fig. 7 APFD Graph of Various approaches

16

14

12

10

8

6

4

2

0

Random
Approach

S. Nayak et al.
Approach

Proposed
Approach

Reverse order

No Order
Test Case Executed

D
e

te
ct

ed
 F

au
lt

s

T1

T2

T3

T4

T5

T6

T7

T8

T9

T1
0

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 7 (2025) Page No:23

TABLE VI APFD VALUE OF THE PROPOSED APPROACH AND

OTHERS APPROACHES

S. No. Approach applied Percentage of APFD

1 Unordered 50%

2 Reverse Ordered 54.3%

3 Random Ordered 51%

4 Nayak Approach ordered 59.6%

5 Proposed Approach 63.6%

VII. CONCLUSION

In this paper a novel technique for test cases prioritization

for the regression testing of the software is presented. The

test cases are prioritized on the basis of the five factors.

Every considered factor has been assigned a positive weight

which shows the ability of the factor to discover the faults.

The weight is assigned by the developers, testers and

experts on the basis of their experience and skills. The value

of considered factors is calculated by analyzing the past

testing history of the software and the coverage of the code

by the particular test case. For experimental validation and

to check the effectiveness of the proposed approach it has

been applied on software and the obtained APFD result is

compared with the similar existed latest approach. The

comparative study shows the effectiveness of the proposed

approach over the others similar approaches.

REFERENCES

[1] N. Chauhan, “Software Testing Principles and Practices”, Oxford

University Press, 2010.

[2] Y. Tak Yu, M. Fai Lau, “Fault-based test suite prioritization for

specification-based testing”, Information and Software Technology,

Vol. 54, pp. 179–202, 2012.

[3] M. Abdollahi Khalilian and Y. Fazlalizadeh Azgomi, “An improved

method for test case prioritization by incorporatinghistorical test case

data”, Science of Computer Programming, Vol. 78, pp. 93–116,

2012.

[4] Y.Chi Huangc, K.Li Penga, C.Yu Huang, “A history-based cost-

cognizant test case prioritization technique in regression Testing”,

The Journal of Systems and Software, Vol. 85, pp. 626– 637, 2012.

[5] E. Rogstad, L. Briand and R. Torkar, “Test case selection for black-

box regression testing of databaseApplications”, Information and

Software Technology, 2013.

[6] S. Malhotra and S. Chaudhary, “Programming in Java”, Oxford

University Press, 2014.

[7] P G Sapna and A. Balakrishnan, “An Approach for Generating

Minimal Test Cases for RegressionTesting”, Procedia Computer

Science, Vol. 47, pp. 188 – 196, 2015.

[8] W.K. Jianga Chan, “Input-based adaptive randomized test case

prioritization: A local beam search approach”, Journal of Systems and

Software, Vol. 105, pp. 91-106, July 2015.

[9] S. Jafrin, D. Nandi and S. Mahmood, “Test Case Prioritization based

on Fault Dependency” I.J. Modern Education and Computer Science,

Vol. 4, pp. 33-45, 2016. [Online] Available: http://www.mecs-

press.org/DOI:10.5815/ijmecs.2016.04.05

[10] Ansari, A. Khan and K. Mukadam, “Optimized Regression Test using

Test Case Prioritization” 7th International Conference on

Communication, Computing and Virtualization 2016, Procedia

Computer Science, Vol. 79, pp. 152 – 160, 2016.

[11] A. Bertolino Miranda, “ Scope-aided test prioritization, selection and

minimization for software reuse”, The Journal of Systems and

Software, pp. 1–22, 2016.

[12] S. Ghai and S. Kaur, “A Hill-Climbing Approach for Test Case

Prioritization”, International Journal of Software Engineering and

Its Applications, Vol. 11, No. 3, pp. 13-20, 2017. [Online] Available:

http://dx.doi.org/10.14257/ijseia.2017.11.3.02

[13] W. FU, H. YU, G. FAN, and X. JI, “Coverage-Based Clustering and

Scheduling Approach for Test CasePrioritization”, IEICE TRANS.

INF. & SYST., Vol. E100–D, No.6, June 2017.

[14] W. Rhmann and V. Saxena, “ Fuzzy Expert System Based Test Cases

Prioritization from UML State Machine Diagram using Risk

Information”, I.J. Mathematical Sciences and Computing, Vol. 1, pp.

17-27, 2017. [Online] Available: http://www.mecs-press.net DOI:

10.5815/ijmsc.2017.01.02

[15] S. Nayak, C. Kumar and S. Tripathi, “Enhancing Efficiency of the

Test Case Prioritization Techniqueby Improving the Rate of Fault

Detection”, Arab J Sci Eng, DOI 10.1007/s13369-017-2466-6

[16] H. Do Schwartz, “Cost-effective Regression Testingthrough Adaptive

Test Prioritization Strategies”, The Journal of Systems & Software,

S0164-1212(16)00016-9DOI: 10.1016/j.jss.2016.01.018 Reference:

JSS 9661.

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 7 (2025) Page No:24

http://dx.doi.org/10.14257/ijseia.2017.11.3.02
http://www.mecs-press.net/

