Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

A new approach for dispatching task flows in GRID
systems with inalienable resources

Taras A. Uzdenov??

1Zhytomyr Polytechnic State University, 103 Chudnivska Str., Zhytomyr, 10005, Ukraine

2@.E. Pukhov Institute for Modelling in Energy Engineering of NAS of Ukraine, 15 General Naumova Str., Kyiv, 03164,
Ukraine

Abstract. This paper presents a new approach for solving the problem of dispatching task flows with
known complexity in GRID systems that have inalienable resources with determined performance. The
proposed method is simple to implement and is compared with the commonly used FCFS method. An
example of a practical problem that can be solved using this method is provided.

Keywords: GRID systems, dispatching task flows, inalienable resources, performance, complexity,
FCFS method, practical problem, task scheduling

1. Introduction

Every modern organization has a number of computers on which its staff works, their use is
not the most efficient, as most of them tasks performed on them do not take up 10-20% of the
maximum performance of the PC. Therefore, it makes sense to use free resources to solve other
problems.

Therefore, the idea arose to create on the basis of such resources computer systems that
would allow other tasks to be performed in parallel with the current ones for each of the nodes.
Such systems are called GRID systems with non-alienable resources. Such systems are also
known as Desktop GRID.

Thus, Desktop GRID is a GRID system that uses non-specialized computing resources as
computing nodes, but disparate computing nodes (computers, laptops, smartphones, etc.) using
local and global networks and special software.

Back in 1999, the first large-scale project of distributed voluntary computing SETI @ home
was launched. Today, Desktop Grid is part of the high-performance computing industry along
with clusters and GRID.

One of the main tasks in creating a GRID system with inalienable resources, as well as for
GRID systems, is the task of task scheduling. Therefore, in GRID systems, a planning mechanism
must be implemented. It is necessary for the distribution of tasks for execution between the
nodes of the system, in order to minimize the execution time and balance the load of the system.

One of the problems that needs to be solved when developing software for a GRID system
with inalienable resources is the task of task scheduling. Task scheduling is quite complex and

now there is no clear and unambiguous solution [8, 12]. Analysis of scheduling methods used
in real systems shows that most systems use mainly the FCFS method [2]. In addition, were
analyzed a number of publications in recent years on this topic, in which developers offer
new methods and various modifications of known ones. They are compared with FCFS and
SJF (Shortest Job First) [1, 3,5, 6,9, 11, 13, 15, 16]. But since in real systems the FCFS method is
most often used, it was decided to make a comparison with it in this study as well.

Volume 24 Issue 6 (2024) Page No:39

Lotus International | ISSN:1124-9064

Volume 24 Issue 6 (2024)

This is due to the fact that this method is very simple and reliable in both development and
operation. The use of other methods significantly complicates the system, making it less reliable.
Since such systems are quite unstable, it is clear why developers abandon complex methods
and prefer FCFS. This leads to the conclusion that it is necessary to develop new methods, the
main characteristics of which should be simplicity and better performance compared to FCFS.

2. New approach

This article further studies the methods developed on the basis of the new approach outlined
in [17]. In particular, a simple practical task that could be performed on a GRID system with
non-alienable resources is considered, and the FSA method is used to distribute tasks between
nodes.

PC characteristics: Force balance =1
CPU clock speed

number of cores

amount of RAM

disk type and speed

communication speed, etc. Power PC

I a4

"N
Task characteristics: Power task
Computational complexity
amount of data

files size, etc.

Figure 1: New approach.

In figure 1 schematically shows the main essence of the proposed in [17] approach. The
proposed methods are developed on the basis of a new approach, which proposes to consider
tasks as one force, and the nodes on which they should be performed as another force, like
Newton’s third law. And distribute the tasks in such a way as to maintain a balance of forces.
Given that such concepts as the strength of the task and the strength of the node are quite
abstract concepts, the author proposes to use the concepts of task power and node power. And
to carry out distribution already according to balance of capacities.

This choice is not accidental, and can be explained as follows. It is known from physics
that power is equal to the ratio of work to time. And the work, in turn, is equal to the force

https://lotusinternational.ac/

Page No:40

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

multiplied by the path to be traversed. Given that when performing a task on a computing
node, the time to determine the power of the task will be equivalent to the time to determine
the power of the node, and the path that the task must pass is equal to the path that the node
must pass, such a replacement is quite logical and acceptable. In the developed methods, these
concepts are quantities relative and therefore can be calculated in different ways, depending on
different characteristics of tasks (volume, computational complexity, algorithmic complexity,
etc.) and different characteristics of nodes (CPU clock speed, RAM volume, communication
channel speed and others). The power of the task means the totality of all the characteristics of
the task, and the power of the PC means the totality of all the characteristics of the PC, compiled
in some way. Moreover, if for a PC it is still possible to use some general formula for calculation,
then for the power of the problem such a formula will change each time, depending on the type
of problem that needs to be solved.
The approach described above is quite simple and effective to use, but it actually divides the

scheduling task into three subtasks:

1. Calculation powers of tasks
2. Calculation powers of nodes
3. Distribution (FSA method)

Both the first and the second subtasks are quite complex and today there are no unambiguous
and universal solution for they. The fact is that any task has a number of characteristics, which
have already been written above, and to compare them and somehow reduce to one value is
quite difficult.

This requires the development of additional methods that would provide such an opportunity.
On the other hand, the task of calculating the powers of nodes is no less complex and also
requires a separate study and solution. But at the same time there are a number of tasks for
which the calculation of capacity will not cause much difficulty. This is well illustrated by the
example of a simple practical problem described in the last section.

2.1, Formulation of the problem

Suppose there is a GRID system with [task and [nodes. By nodes we mean a computational
element. We introduce the concept of task power [and node power [. Therefore, v
have the set of power of tasks [= {1, [12, [13, ..., (1} and the set of power of nodes [=
{l11, [12, [13, ..., [}. We need to optimally distribute tasks across nodes.

Schematically, a given task is shown in figure 2.

2.2, Flow Scheduling Algorithm (FSA)

The method of flow scheduling has the following form:

1) calculate the power of tasks and the power of nodes

2) choose the [J-th task

3) find the pair ' — T, for which the ratio of the power of the task [I;- to the power of the node
[J; will be as close as possible to unity

4) send the [J-th task to the [I-th node

Volume 24 Issue 6 (2024) Page No:41

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

l'l’lsk 1] [Tlsk 2 l I‘I‘a'l: 3 l oo o0 l'l’.-l(ni l [Tuk n]

Dispatcher

A
il

K pc 2 | [pc 3 | 000 [pc m1 | [pc m |

Figure 2: Scheduling task.

5) recalculate the power without (1 and [
6) if there are unsent tasks, then go to point 2
7) completion

2.3. Flow Scheduling Algorithm Parallel (FSA_P)

The described approach is universal and allows to develop not only methods for distribution of
consecutive tasks but also for tasks which can be parallelized. Below is the following method:

1) calculate the power of the nodes, and the total power [

)
2) select the [-th task from the task queue
3) distribute it proportionally, according to the power of the nodes
4) send for execution
5) if there are unallocated tasks in the queue, go to point 2
6) completion

3. SoPware package

To create software that allows you to test and investigate the effectiveness of the proposed
methods, developed its client-server architectural model (figure 3).

This model is based on the WCF service [10] for software that requires distributed computing
in computer networks and the Internet, as well as to create a Desktop GRID.

Based on this model, a software package for simulating the operation of a GRID system with
inalienable resources and the study of scheduling algorithms was developed, which was named
SgridAR-1 [18].

A number of tests were performed using the developed simulator. To determine their ef-
fectiveness, the FCFS scheduling method was chosen because it is most often used for GRID
systems with inalienable resources. In addition, other methods cannot be used because in this
case they do not involve a change in the power of the nodes, and other characteristics, such as
time quantum or priority, it was decided not to enter.

Figure 4 highlights nine areas in the Server window, which during testing displays information
about the results of the simulation:

Volume 24 Issue 6 (2024) Page No:42

Lotus International | ISSN:1124-9064

[J B [J [J
r r E Y F Y
[User] [User] [User] [User]
! e
S g Users of the system set | / .
"~
Sy tasks to perform | // -
Ty | P
T ; / »
R 4 4 e
~a ¥V ¥ ps
web.server..com
[Implements the user interface G W
Forms a list of tasks %
stores on Data server | - ~ \
' \
I A * |
| |
[l Dispetcher
* | [distribution of tasks]
]
Data server T +
[ftp server |
Database] | forwarding |
commands to [
nodes, and
i 4 i * i * : task data |
| | | | | | ¥ !
| | |
| I |
|] | [
| | | | | | WCF service
| | | [link transferon the
* | | * task support for
connections with
PC-1 PC-2 PC-n computing nodes]
[performing [performing o 0o o [performing
tasks | tasks] tasks]
T 4 i t L ______ _‘ T * T *
| - T e T - |
| T WL il SRSy Do R T o J
Lt ow gosm o s e o we e e maraugme gp mnoaep g em o an s o
e e e e g g e e o

Figure 3: Architectural model of Desktop GRID.

1) the total volume of all tasks to be solved
2) total execution time of all tasks for each algorithm

3) the area in which messages about the beginning and end of calculations are displayed, as

well as information about which algorithm is currently working

4) in this area the conditions for testing are set: the number of tasks, their minimum and

maximum value, the choice of algorithm

5) list of all generated tasks, their scope and power, status (performed or not), execution time

for each algorithm

https://lotusinternational.ac/

6) after completing the test, this area receives summary information about the operating time
of each algorithm, after which in area 2 the information is updated to perform a new test,

and the button “Export to Excel” becomes active
7) the number of Clients to run

Volume 24 Issue 6 (2024)

Page No:43

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

8) the maximum and minimum value of the power of the system nodes, after pressing the
“Change Power PC” button, the system will automatically change the power in any way for
all nodes, in the range from minimum to maximum values

9) information about the nodes connected to the system, their capacity and status (free or busy)

S SERVER = m] X
; 7)
‘ Run Host \ Disconnect ‘ (4 Generate | 50 | From 20 To 70 Algoritm | ETALON .)(20 | | RunWorkers
(Change Power PC *
SUM Task: 2195 7 5 | D task status Ptask ETALONP FCFSP FSAP ETALON FCFS FSA FSAN 8
1053 | ¥ |0.828125(2944 |13388|4678 |53022 |132525|58899 |1766¢ || From 01+ To 1 -
(; " v Fi
P - 11|64 = 1 3442 16144 |5633 |64021 |320026|64018 |6455¢ = T
- 12|46 I |0.71875 2531 11615 |4082 [46029 [92025 [46061 7668 |\
ETALON P 1362 | ¥ |096875 [3274 15608 5455 62191 |68915 |155022]6915: ||| 'D Power S‘aztus 9
FCFSP_ |0 1421 | ¥ |0328125[1238 |5379 |1941]21022 |35026 |105021|7001:2 05 -
FSAP 0 15[21 | ™ Jo328125[1403 5390 [1948[21259 [105013]70181 [7023¢ ||| 5192 =
ETALON |0 1659 | ™]0.921875/|3181 14893 [5200 |59023 |65592 |65583 |9834~ 6 |06
= 7 |06 v
FCFS 0 17|57 0.890625(3042 14366 |5035 [57029 |190029(63351 |1425¢ =
FSA 0 1862 | ¥ [o.96875 [3379 15659 [5463 [62214 |103366]103341]6915 ||| 8193 -
FSA Min |0 19]55 | ¥]0.859375[2912 13885 |4849 [55020 |55023 [1100211375¢ ||| 2194 -
20[55 | ¥ [o859375|2984 [13873[4924 [55232 [110187|55016 [11000 /|| 10104 -
FSA Max |0 1oz 7
e i
7 N “Start testing | | Export to Exel 12|05 o
All tasks are ready! [..tart testing | port to Exel 5
FSA started! 3 6 » 13]0.9 -
P Pi— ID sumTask ETALONp FCFSP FSAP ETALON FCFS FSA FSAMin FSAMax|}| 14]o.6 :
i i 20[2195 [121349 |555709]196516] 140448 |365130|340261|360078 [260040 ||| 15[0.2 &2
FSA Min started! I 7elos =
All tasks are ready! 17 O>3 v
FSA Max started! 18 0:6]
All tasks are ready! 1907 7]
Test finished! >0l05 7]
\. J — — : J

Figure 4: SGridAR-1 server window.

SGridAR-1 allows to show work of the offered method and to compare results of its work
with other, well-known, methods of dispatching. With the help of this software you can conduct
experiments and explore the work of algorithms, changing the number and size of tasks, the
number and power of the PC.

In this program the mechanism of generation of tasks was implemented. The task of which

is to create a tasks to be executed in an arbitrary way, specifying the time required for the task
to be performed. Power of tasks are calculated in proportion to the given time. The power of
the same nodes is also generated arbitrarily. But depending on their size slow down the timer.

The implemented visual interface clearly shows how the GRID system works. This set of
programs can be used not only for research but also for the educational process.

4, Test results

The SGridAR-1 system implements a testing mechanism that provides for the execution of all
tasks generated by the system, using different algorithms for the distribution of tasks between
nodes. That is, first the tasks are distributed according to algorithm 1, then according to
algorithm 2 and so on until the last task.

Volume 24 Issue 6 (2024) Page No:44

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

The following scheduling methods are introduced into the system: ETALON_P; FCFS_P;
FSA_P; ETALON; FSA, FSA_Min, FSA_Max.
Parallel methods:

o ETALON_P - the method is taken as a reference. This is a FCFS method that does not take
into account the power of the personal computer (PC) and tasks. A system is modeled in
which all nodes are the same in power. Parallel tasks are possible

+ FCFS_P - FCFS method, which takes into account the power of the PC and the ability to
distribute one task to several PCs

+ FSA_P is a proposed method that takes into account the power of PCs and the ability to
distribute one task to multiple PCs

The following methods:

+ ETALON - the method is taken as a reference. This is a FCFS method that does not take
into account the power of the PC and the task cannot be distributed

+ FCFS - a method that takes into account the power of the PC and the task can not be
distributed between nodes

+ FSA - the proposed methods, which take into account the power of the PC and the task
can not be distributed

+ FSA_Min - modified FSA method combined with Min-Min method [7]

+ FSA_Max - modified FSA method combined with Max-Min method [14]

For comparative experiments, 100 tasks with a runtime of 1 to 10 seconds were generated
and 10 nodes were run on which they should be executed. Testing was as follows: first, the
calculation of the total execution time of all tasks for 1 method, entered into the system, at an
average power of the system 10%, then programmatically increased the system power by 5%
and again performed calculations for 1 method. Then again increased the power of the system
by 5% and performed the calculation by 1 method. And so on until the power of the system has
grown to 100%. Thus, testing was performed for each of the methods. Each time performing
the same tasks, changing only the average power of the system.

A total of 19 average power tests were performed for each of the planning methods introduced
into the system. A total of 152 tests were conducted.

Such studies were conducted to show how the average power of the system affects the
efficiency of the methods.

In figures 5-7 are diagrams based on test results. Based on the results obtained, it can be
concluded that the FSA and FSA_P methods give better results than the FCFS and FCFS_P
methods.

As can be seen in figure 5, the curve of the FSA_P method has a smooth shape, and the curve
of the FCFS_P method is broken. This allows us to conclude that the FSA_P method is well
predictable and, knowing the power of the system and the amount of tasks, it is possible to
predict the completion of calculations. However, solving problems by the FCFS_P method, it is
quite difficult to predict the completion of calculations, because a lot depends on which node,
which task will be performed.

Volume 24 Issue 6 (2024) Page No:45

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

0,10,150,20,250,30,350,40,450,50,550,6 0,65 0,70,75 0,8 0,850,9 0,95 1
80000

70000 |,
60000
& 50000

20000 e
\.\.\.\.\.‘
10000 *

me, MC

ution t

[
[TN]
o O
[T]
[(=

€xec

Total

—

TT —,

Average power

——ETALON P —e—FCFS P —e—FSA P

Figure 5: Test results for parallel methods.

0,10,150,20,25 0,3 0,35 0,4 0,450,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,90,95 1
100000

90000
» 80000

MC

ne

Average power
—s—ETALON —e—FCFS —e—FSA

Figure 6: Test results for following methods.

In figure 6, it is seen that the sequential FSA method has a smoother curve than the FCFS
method, which also indicates a better predictability.

In figure 7, which shows additional methods FSA Min and FSA Max in comparison with the
FSA method, it is seen that the differences in the results are insignificant, but this is only for
the situation when the number of tasks exceeds the number of nodes.

As can be seen from the graphs, the system also has ETALON and ETALON_P methods,
and at first glance it may seem that their efficiency is much better than the FSA and FSA_P
methods. But this is not the case. The fact is that the methods ETALON and ETALON_P are
shown not for comparison with others, but to demonstrate the reference state of the system,

Volume 24 Issue 6 (2024) Page No:46

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

0% 20% 40% 60% 80% 100%
300000

250000

MC

200000

150000

100000

0\‘_‘\/\ NS M_
50000 ~— M
g -—

. S m———a \

Total execution time

Average power

=#=FSA e==—FSAMin =——=FSAMax

Figure 7: Test results for methods FSA, FSA_Min, FSA_Max.

when all the nodes in it have a capacity of 100%. As can be seen from the graphs, when the
average power increases to 1, the execution time by different methods approaches the maximum
possible reference value.

Figures 5, 6 show that the behavior of the FCFS method is very unstable, large jumps in the
results. This is because the distribution by the FCFS method very much depends on a random
factor, and which node will have what task. This is quite logical, because if, for example, a node
with a capacity of 0.1 receives a task with a capacity of 1, then the execution time in this case
will increase significantly, because there may be a situation that other nodes will work and will
wait too long to complete this task.

5. Practical task

It is proposed to consider such a task. If, for example, we have a web resource with a large
number of images (for example, a portfolio, an online store, etc.), and we want to promote it in
search engines in order to attract more users and increase revenue, then we need will perform
page optimization according to search engine rules (for example, using Google PageSpeed [4]),
which includes image optimization.

In figure 8 schematically shows the problem described above. Let's say we have 1000 images
that need to be optimized according to Google Page Speed. Total files size is 5 GB. If you perform
this task on one PC, it will take a long time (maybe even a full day). It all depends on the speed
of the PC on which to do it.

Therefore, to speed up this task, it would be advisable to divide it into different PCs that we
have. To do this, we will need to determine which method will be used for distribution.

In fact, as mentioned above, there is a new method of FSA, based on the described approach.
The main difficulty of this method is to calculate the power of tasks and nodes. But for this
practical example, this problem is quite simple to solve. Given that all images differ from each

Volume 24 Issue 6 (2024) Page No:47

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

EMG147 EMG14t EIMG st EIMG146T FIMG48t EIMG495 EIMGIS08 EIIMG1S42 EIMGISSS EIMG1Ses IMG1s8t EIMG1594 IMG1607 EIMG1620 IMG 163
EMo148 Mo142 EIMG4s5 EIMG M8 EIMGI4E EMGM% EMGis09 EMeiss EMisse [EMeissd EiMeise EIMGIses EIMG160s EIMGI621 [EIMG 1634
BIMG149 EMG143 EIMG1456 M 146d M 1484 EIMGMOT [EIMGIS10 [EMG1s4 EMG1ssT EIMGISTO EIMGAS3 EIMG1S% EIMG1609 E|IMG162 [EIMG 1635
BMo1430 EMo1a44 EMoMST M40 M85 EMo 98 EMG1s2 EMGisds EMisss EMGisTt EiMG1ses EMG1sy EMG1610 EMG163 (MG 1636
FiMe1431 EiMG144s FiMGi4ss EIMG4T2 EIMG1486 EIMG14%9 [EMG1s3 [EMeis4 [EMe1ssy MG isT2 EMG1sss EIMG1s9s EIMGten IMGt6s4 IMG 1637

There are 1000 images ranging in size from 100 KB to 10 MB

There are 15 nodes with power from 0.1 to 1

S EESE S saa e e
Figure 8: Practical task.

other only in size, the largest image (J110) is assigned power (]~ = 1), and the remaining
(T — 1) images are calculated by the power of the tasks by the formula:
_Ho-Oppo

0
: Uooo

Given that ([~ = 1) we can shorten the expression:

Op
Og = 1
: Unon)

On the other hand, we have [} PCs (computing nodes), which differ from each other, for
example, only the clock speed of the processor. Then, similarly to the calculation of the power
ofthe problem, we can find the power of the nodes, according to the proportion.

The largest by the clock frequency of the node ([1:,1) is assigned power ([111, = 1), &he
remaining ([1 — 1) power of the nodes is calculated by the formula:

Up - Uooo

- Uooo
Given that ([~ = 1) we can shorten the expression:

Un)
D =
" Do @
Then the algorithm of the method of scheduling FSA tasks can be reduced to the following

form:

1) calculate O = [J1, Uz, 3, ..., o by formula (1)

Volume 24 Issue 6 (2024) Page No:48

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

2) calculate [J = [y, [, U3, ..., o by formula (2)
3) choose the [I-th task

4) find the pair 0 - [, for which the conditim{x: ‘ ‘ ‘ ‘}:

|
min -—1‘

o,
is fulfilled.
5) send the [I-th task to the [J-th node
6) recalculate the powers without (I and [;

)
)
7) if there are unsent tasks, then go to point 2
8) completion

Thus, we showed that calculating the power of tasks and the power of nodes is not such a
difficult task when you need to distribute the image between nodes in order to optimize the
size. If you use different nodes, but different in speed of connection to the network, then the
power of the nodes must be calculated in some other way, because not always the node with
the processor with the highest clock speed will have the highest power. And if this point is not
taken into account, then the distribution will not be as effective as in the first case.

As mentioned above, this method is universal and the distribution of tasks according to it
makes it possible to significantly speed up the execution of the task queue and thus increase
the efficiency of GRID systems with inalienable resources compared to the FCFS method.

6. Conclusions

The results of the study of the effectiveness of the proposed methods showed that their use for
task allocation in GRID systems with non-alienable resources provides a significant reduction
in task queue time compared to the FCFS scheduling method, provided that the number of tasks
exceeds the number of nodes.

All the proposed methods are quite stable and well-predicted, which means that their use
in GRID systems will give advantages not only in time and performance, but also allow more
efficient planning of the system work. The FCFS method works well, but for GRID systems that
have different power resources, its performance depends heavily on a random fact that can be
considered a significant drawback.

The main difficulty in using these methods is the need to somehow reduce all the characteris-
tics of tasks and nodes to one relative value. But there are a number of tasks for which this can
be done quite easily. As shown in the example of the problem of image optimization, it is quite
easy to calculate both the power of tasks and the power of nodes.

References

[1] Carastan-Santos, D., De Camargo, R.Y. and Trystram, D., 2019. One can only gain by
replacing EASY Backfilling, a simple scheduling policies case study. 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, pp.1-10.
Available from: https://doi.org/10.1109/CCGRID.2019.00010.

Volume 24 Issue 6 (2024) Page No:49

https://doi.org/10.1109/CCGRID.2019.00010

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

[2] Choi, S, Kim, H., Byun, E. and Hwang, C., 2006. A Taxonomy of Desktop Grid Systems
Focusing on Scheduling. KU-CSE-2006-1120-02.

[3] Dheenadayalan, K., Muralidhara, V.N. and Srinivasaraghavan, G., 2016. Storage Load
Control Through Meta-Scheduler Using Predictive Analytics. In: N. Bjgrner, S. Prasad and
L. Parida, eds. Distributed Computing and Internet Technology. Cham: Springer International
Publishing, pp.75-86.

[4] Google Docs, 2021. PageSpeed Insights. Available from: https://developers.google.com/
speed/docs/insights/v5/about.

[5] Haruna, A.A,, Jung, L.T. and Zakaria, N., 2015. Design and Development of Hybrid
Integrated Thermal Aware Job Scheduling on Computational Grid Environment. 2015
International Symposium on Mathematical Sciences and Computing Research. pp.13-17.
Available from: https://doi.org/10.1109/ismsc.2015.7594020.

[6] Kaur, M., 2017. Multi-objective Evolution-Based Scheduling of Computational Intensive
Applications in Grid Environment. Proceedings of the International Conference on Data
Engineering and Communication Technology. pp.457-467. Available from: https://doi.org/
10.1007/978-981-10-1678-3_44.

[7] Kokilavani, T. and Amalarethinam, D.L.G., 2011. Load Balanced Min-Min Algorithm
for Static Meta-Task Scheduling in Grid Computing. International Journal of Computer
Applications, 20(2), pp.43-49.

[8] Kropyvnytska, V.B., Klim, B.V., Romanchuk, A.G. and Slabinoga, M.O., 2011. Investigation
of scheduling algorithms in computer systems. Rozvidka ta rozrobka naftovykh i hazovykh
rodovyshch, 2(39), pp.93-105.

[9] Kumar, P.S,, Parthiban, L. and Jegatheeswari, V., 2019. Privacy and security issues in cloud
computing using idyllic approach Latha Parthiban. Networking and Virtual Organisations,
21(1), pp-30-42. Available from: https://doi.org/10.1504/1JNV0.2019.101146.

[10] Microsoft Docs, 2021. What Is Windows Communication Foundation — WCF. Available
from: https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf.

[11] Naithani, P., 2018. Genetic Algorithm Based Scheduling To Reduce Energy Consumption
In Cloud. 2018 Fifth International Conference on Parallel, Distributed and Grid Computing.
IEEE, pp.616-620. Available from: https://doi.org/10.1109/pdgc.2018.8745801.

[12] Node, S., 2021. Desktop grids, connecting everyone to science. Available from: https:
//sciencenode.org/feature/desktop-grids-connecting-everyonescience.php.

[13] Pujiyanta, A. and Nugroho, L.E., 2018. Planning and Scheduling Jobs on Grid Comput-
ing. 2018 International Symposium on Advanced Intelligent Informatics. IEEE, pp.162-166.
Available from: https://doi.org/10.1109/icic47613.2019.8985978.

[14] Ramyachitra, D. and Kumar, P.P., 2016. Frog leap algorithm for homology modelling in
grid environment. Journal of Emerging Technologies and Innovative Research, 7(1).

[15] Sahana, S., 2019. Evolutionary based hybrid GA for solving multi-objective grid
scheduling problem. Microsystem Technologies. Available from: https://doi.org/10.1007/
s00542-019-04673-z.

[16] Thet, Y., Hlaing, H. and Yee, T.T., 2019. Static Independent Task Scheduling on Virtualized
Servers in Cloud Computing Environment. 2019 International Conference on Advanced
Information Technologies. IEEE, pp.55-59. Available from: https://doi.org/10.1109/aitc.2019.
8920865.

Volume 24 Issue 6 (2024) Page No:50

https://developers.google.com/speed/docs/insights/v5/about
https://developers.google.com/speed/docs/insights/v5/about
https://doi.org/10.1109/ismsc.2015.7594020
https://doi.org/10.1007/978-981-10-1678-3_44
https://doi.org/10.1007/978-981-10-1678-3_44
https://doi.org/10.1504/IJNVO.2019.101146
https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf
https://doi.org/10.1109/pdgc.2018.8745801
https://sciencenode.org/feature/desktop-grids-connecting-everyonescience.php
https://sciencenode.org/feature/desktop-grids-connecting-everyonescience.php
https://doi.org/10.1109/icic47613.2019.8985978
https://doi.org/10.1007/s00542-019-04673-z
https://doi.org/10.1007/s00542-019-04673-z
https://doi.org/10.1109/aitc.2019.8920865
https://doi.org/10.1109/aitc.2019.8920865

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

[17] Uzdenov, T., 2021. A New Task Scheduling Algorithm for GRID Systems with Non-
alienable Resources. In: A. Zaporozhets and V. Artemchuk, eds. Systems, Decision and
Control in Energy II. Cham: Springer International Publishing, pp.207-220. Available from:
https://doi.org/10.1007/978-3-030-69189-9_12.

[18] Uzdenov, T., 2021. Simulator of Task Sheduling in Geographicaly Distributed Computer
systemswith Non-Alienable Resources. Electronic Modeling, 42(1).

Volume 24 Issue 6 (2024) Page No:51

https://doi.org/10.1007/978-3-030-69189-9_12

