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Abstract 

In traditional attitude mounting misalignment estimation methods for the calibration of unmanned autonomous vehicle (UAV) based light 

detection and ranging (LiDAR) system, signalized targets and iterative corresponding models are required, which makes it highly cost 

and computationally time-consuming. This paper presents an attitude mounting misalignment estimation (AMME) method for the 

calibration of UAV LiDAR system. The proposed method is divided into the coarse registration of LiDAR strips and the estimation of the 

attitude mounting misalignment. Firstly, 3D keypoints are extracted in the point clouds using the scale-invariant feature transform (SIFT) 

algorithm. Afterwards, the point feature transform (PFH) descriptor is used for 3D keypoint matching. Then, the coarse registration is 

executed. In the second part of the contribution, the systematic errors in the attitude mounting misalignment are estimated by 

incorporating the proposed triangular irregular network (TIN) corresponding model into the calibration modelling. Using the TIN-based 

corresponding model saves time and cost for AMME method. Furthermore, it provides two important effects: practical and 

computational, as no designed calibration boards, segmentation and iterative matching are needed. The performance of the proposed 

method is demonstrated under an UAV LiDAR data onboarded with lightweight navigation sensors. The experimental results show the 

efficacy of the method in comparison with a state-of-the-art method. 

Keywords: UAV LiDAR system, calibration, attitude mounting misalignment, TIN-based corresponding model 

 

 

 

I. INTRODUCTION 

A goal in geomatics is to develop a mobile mapping system 
that can capture georeferenced 3D point clouds with positional 
accuracy. Within various ascendant geo-technologies for spatial 
data acquisition, unmanned autonomous vehicle (UAV) based 
light detection and ranging (LiDAR) systems are highly 
attractive because of their lightweight and ability to derive point 
clouds with very high and homogeneous point density from the 
environment. 

During the mapping process, laser unit measurements, the 
estimated platform’s trajectory obtained from a Global 
Navigation Satellite System (GNSS) and an inertial navigation 
system (INS) should be properly integrated with demanding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accuracy. In addition, the mounting parameters between LiDAR 
and the integrated GNSS/INS sensors must be achieved to allow 
UAV LiDAR systems to derive 3D point clouds with 
centimetric positional accuracy. However, due to the systematic 
errors of a UAV LiDAR data derived from GNSS/INS errors 
and boresight angular error, point clouds derived with high 
positional accuracy face a challenge. They must efficiently 
detect the systematic georeferencing errors re-estimating the 
entire UAV LiDAR system mounting parameters. This 
procedure is known as attitude mounting misalignment 
calibration (AMMC). 

Although existing AMMC methods are functional, they 
require manual procedure for signalized targets, primitive-based 
or ground-based 
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approaches, and high computational cost. This paper presents a 
triangular irregular network (TIN)-based corresponding model 
for estimating attitude mounting misalignment to derive a high 
positional 3D point cloud. A keypoint-based approach to avoid 
iterative matching is also used. The proposed method 
demonstrates that the introduction of a TIN-based 
corresponding model can promote the practical effect at the 
AMMC and at computational cost while segmentation and 
iterative matching are not needed. The experiments show the 
role of AMMC in the accuracy of the 3D point clouds. It also 
demonstrates that the TIN-based corresponding model can 
estimate attitude mounting misalignment without iterative 
matching. 

This paper is organized as follows. Section II reviews the 
related works in AMMC. In Section III, the TIN-based 
corresponding model is given in detail. Section IV describes the 
experiments and results obtained using the proposed method. 
Finally, the paper is concluded in Section V. 

II. RELATED WORKS 

During the last decade, the AMMC problem has been 
intensively researched. These approaches are assembled into 
two different groups: (1) strip adjustment and (2) AMMC 
methods. In strip adjustment methods, the systematic errors are 
modelled in the object domain. Surfaces or features derived 
from the LiDAR data natural are widely used to find the 
transformation parameters between overlapping LiDAR strips. 
In Kilian et al. [1], a polynomial model was previously 
introduced to determine the discrepancy over LiDAR strips. 
Although it allows the tridimensional assessment of relative 
accuracy, designed calibration boards covered by highly 
reflective surfaces are mandatory. To avoid calibration field 
boards, a plane-based approach is proposed in [2]. The LiDAR 
data accuracy is achieved via surfaces previously matched. 
Vosselman [3] formerly introduced linear features for the strip 
adjustment procedure. In Van der Sande et al. [4], point-to-plane 
distances were reliably used as observables into least-squares 
method (LSM) for the assessment of relative accuracy of LiDAR 
data. According to Filin [5], non-rigorous approaches focus on 
the effect of the systematic errors omitting the causes of the 
source errors derived from lightweight GNSS/INS and laser 
sensors onboard the UAV. Furthermore, primitives rely on 
segmentation, in which there are computationally non-attractive, 
manual interventions might be necessary and can affect the 
quality of the adjustment step. 

By contrast to strip adjustment approaches, AMMC methods 
investigate the sources derived from systematic errors. 
Furthermore, the attitude mounting misalignment and other 
calibration parameters can be used to model the point cloud. In 
Skaloud and Lichti [6], gabled roofs were manually extracted in 
the LiDAR data, and a constraint is used to assurance reliability 
in the LSM mounting parameters solution. Although, no 
additional calibration field is needing the method depends on 
segmentation procedures. In Habib et al. [7], the effect of the 
systematic errors was modelled calculating the discrepancies 
between pairs of LiDAR strips, while the trajectory errors were 
used for the estimation of the mounting parameters. The authors 
proposed a variant of iterative closest point, proposed by [8], to 
find the patch correspondences, called ICPatch. However, the 

mentioned algorithm is iterative and time consuming. A spline 
trajectory correction model for the modelling of trajectory errors 
was previously proposed in [9]. A point-to-plane corresponding 
model was previously used to the estimation of the mounting 
parameters jointly with the correction errors task. This is done 
iteratively using the residual vector between closest points and 
their normal vectors. In Ravi et al. [10], primitive-based were 
used to find the attitude mounting misalignment of a UAV 
LiDAR system onboarded with lightweight positional, inertial 
and active sensors. However, the authors used a designed 
calibration board for the automatic identification of primitive 
correspondences. Furthermore, the method also depends on 
rigorous flight configurations. A variant of the [9] also was used 
for AMMC of a mobile terrestrial and UAV LiDAR systems in 
[11]. However, the method is computationally non-attractive 
and manual interventions are mandatory. Zhang et al. [12] have 
presented a mounting parameters error rectification approach, 
which aims at the iterative updating of boresight errors using 3D 
matched points obtained on laser intensity information. For each 
iteration an approximate solution is obtained using the LSM. 
Although efficient, the algorithm is highly time-consuming. In 
de Oliveira and dos Santos [13], a AMMC of UAV LiDAR 
systems with refinement of the attitude mounting misalignment 
using a point-to-plane approach was previously presented. The 
mounting parameters are estimated conditioning the centroid of 
a plane segmented to lie on its corresponding segmented plane 
without an additional surveying campaign. Then, the attitude 
mounting misalignment are refined using a new point-to-plane 
model. Although the proposed constraint can guarantee that the 
calibration parameters are correctly estimated even when the 
GNSS/INS trajectory is highly noised, is highly demanded the 
iterative refinement of the attitude mounting misalignment. It 
also depends on segmentation. 

 

Fig. 1. Generic structure of the proposed method. 

 

Contrary to the aforementioned approaches, using the TIN- 
based corresponding proposed model saves time and 
computational cost for AMMC, as no designed calibration 
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boards and segmentation are needed. It can also avoid iterative 
matching, as used for the ICPatch algorithm. 

III. ATTITUDE MOUNTING MISALIGNMENT 

This paper follows the concept of AMMC by using a TIN- 
based corresponding model. The main aspect of this approach is 

 

𝑒 = 𝑛 

{𝑢 = 𝑒 ⨯ 
(𝑝𝑖−𝑝𝑗) 

‖𝑝𝑖−𝑝𝑗‖ 

𝑣 = 𝑒 ⨯ 𝑢 
where n represents the normal vector of point. 

 

 

 

(2) 

the development of a TIN-based corresponding model for 
AMMC. The architecture of the proposed AMMC method 
consists of six main steps, as illustrated in Figure 1. In particular, 
it uses a non-iterative TIN-based approach without segmentation 
requirements. 

From the raw UAV LiDAR data, a set of 3D point clouds are 
created. Secondly, the proposed method uses a statistical outlier 

Thus, the actual descriptors for (p𝑖, p𝑗) can be computed to 

express the difference between n and those of its neighbourhood 
points 𝑝𝑗 [15]: 

 

𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑢 ∙ 𝑛) 

𝛽 = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝒆 ∙ 
(𝒑𝑖−𝒑𝑗) 

) 
removal algorithm in order to detect and remove outliers [14]. 
Afterwards, a keypoint-based coarse registration by combining 
an adaptation of scale invariant feature transform (SIFT) 
algorithm with the formulation of the point feature histogram 

 

‖𝒑𝑖−𝒑𝑗‖ 

Ω = 𝑎𝑟𝑐𝑡𝑎𝑛(𝒗 ∙ 𝑛, 𝑒 ∙ 𝑛) 

{ 𝑑 = ‖𝑝𝑖 − 𝑝𝑗‖ 

(3) 

(PFH) descriptor [15] is used to coarse registration step. 
Fourthly, gabled roofs are extracted by combining the 
progressive morphological filter [16] and the random sample 
consensus algorithm [17]. Thus, the transformation parameters 
jointly with the plane parameters are estimated. Finally, a TIN- 
based corresponding model is incorporated into the functional 
model of the AMMC method for the estimation of the attitude 
mounting misalignment. 

A. Point cloud generation by using the LiDAR Equation 

Typically, three coordinate systems, namely, mapping frame 
(m), INS body frame (b) and laser unit frame (l) are involved in 
the LiDAR Equation. The 𝑝𝑚(𝑡) in the time ti can be written as: 

 
𝑝𝑚(𝑡𝑖) = 𝑎𝑚  (𝑡𝑖) + r𝑚(𝑡𝑖)[r𝑏𝑟𝑙(𝑡𝑖) + 𝑎𝑏  ] (1) 

where d represents the distance between the origins of the 

coordinate systems. 

The PFH algorithm generate a 33-bin PFH histogram for 
each pair of LiDAR strip. Thus, the correspondences are 
established, and the initial transformation parameters are 
coarsely estimated a transformation using a global affine 
transformation matrix, as follows: 

 

𝑝𝑖 = 𝐹𝑝𝑗 + 𝑏 (4) 

where 𝑝𝑖 and 𝑝𝑗 are pairs of corresponding 3D key points, 𝐹 
represents a coefficient matrix, and 𝑏 is the translation vector. 

D. Estimation of the attitude mounting misalignment by using 
𝑗 𝑛𝑎𝑣 𝑏 𝑙 𝑗 𝑛𝑎𝑣 the proposed TIN-based corresponding model 

This paper introduces a TIN-based corresponding model to 
estimate the attitude mounting misalignment minimizing the 

where 𝑎𝑚 (𝑡𝑖) represents the position at time 𝑡𝑖 of the 

GNSS/INS in 𝑚, r𝑚(𝑡𝑖) is the attitude between the INS and 𝑚, 

r𝑏 denotes the boresight matrix between the laser unit and the 

INS, 𝑟𝑙(𝑡𝑖) is the coordinate vector of j-th point in 𝑙 and 𝑎𝑏 

sum of the distance between points and corresponding TIN 
patches. Typically, the TIN structure is formed with several 
planar patches. Thus, to reduce the number of existing primitives 
in the LiDAR strips, a progressive morphological filter [16] is 

𝑗 

the fixed lever-arm vector. 

B. Outlier detection and filtering 

𝑛𝑎𝑣 
used. Firstly, an erosion followed by a dilation process is 
applied. The large non-ground objects remain while small 
vegetation is removed. Secondly, the height difference between 

In point cloud processing, noise points can easily corrupt 
matching process. Thus, detect and remove outliers is an 
important step for future procedures. Herein, the outliers are 
detected by analysing a query point 𝑝𝑞 with respect to its 

surrounding neighbours 𝑘 via the statistical outlier removal 
algorithm [14]. Basically, given a reference strip (ℵ), the mean 
distance 𝑑𝑝 between each 𝑝𝑞 ∈ ℵ and its 𝑘 neighbours is 

computed, resulting in a filtered strip (ℵ′). 

C. Coarse registration by keypoint-based approach 

The keypoint-based coarse registration is used by combining 
an adaptation of SIFT algorithm with the PFH’s descriptor 

the original LiDAR data and the initial filtered surface is 
calculated. Again, the erosion followed by dilation is executed. 
Finally, a new filtered surface is determined. The gabled roof is 
remained in the point cloud, while the vegetation is removed 
using the random sample consensus algorithm [17]. 

Herein, a TIN is created from gabled roof objects using the 
method described in [18]. This paper recovers the TIN patch 
parameters jointly with the transformation parameters in a 
combined LSM solution expressed as: 

 
〈𝑛𝑇, 𝑐, R, t 〉 (5) 

 

formulation [15]. Firstly, the SIFT algorithm detect edges in 3D where 𝑛 = [𝑛 , 𝑛 , 𝑛 ] , R is the 3x3 rotation parameters and 
𝑇 𝑥 𝑦  𝑧 

using difference-of-gaussian scale-space. Afterwards, a search 
radius is selected and the normal of each point into search radius 
is computed. Then, a Darboux frame with origin at 3D keypoint 
is computed for each pair of points, as follows: 

t is the 3x1 translation parameter. The method uses the 

constrain introduced in [13] to forces the centroids (𝑐) to belong 

to its corresponding patch. 
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Thus, each point 𝑝𝑇 in the target point cloud ℵ is computed 

via the intersection between an orthogonal projected line from 
𝑝𝑅 to its corresponding TIN patch into the reference point cloud 
ℶ′ (see Figure 2). 

and 𝑗 = 𝑖 + 1; by substituting Equation (1) in the 𝑝𝑅 of Equation 
(7) and rearranging the terms of this equation, the following 
expression is obtained: 

𝑛𝑇T = −𝑑𝑇 (13) 

 

 
where T = R 𝑖 (𝑛𝑇𝑇 [𝑎𝑚 (𝑡) + r𝑚(𝑡)[r𝑏𝑟𝑙 + 𝑎𝑏  ]]) + t 𝑗. 

ℶ 𝑛𝑎𝑣 𝑏 𝑙 𝑗 𝑛𝑎𝑣 ℵ 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Conceptual basis of the proposed corresponding model. 

 

The intersection between a orthogonal projected line and a 
TIN patch is as follows: 

 
𝑝𝑇 = 𝑝𝑅 + 𝑠𝑛𝑇 (6) 

 

Thus, three separate sets of equations per TIN 
correspondences are formulated, one for estimation of tℵ𝑗 (see 

eq. 11), in which the LSM solution can be solved by using 
equations 𝐵𝑡 = 𝑦 + 𝑒 , where 𝐵 and 𝑦 are obtained by 

assembling 𝑛𝑇 and 𝑑𝑇 − 𝑑𝑇
′ for all TIN-to-TIN 

correspondences and 𝑒 contains the residual values. 

The LSM solution for tℵ𝑗 can be obtained as: t̂ℵ 𝑦  = 
(𝐵T𝐵)−1𝐵T𝑦. The second equation for the estimation of Rℶ𝑖 

(see eq. 12), in which is obtained using Horn’s solution [19]. The 
third equation for the estimation of the attitude mounting 
misalignment r𝑏 ( ∆𝜅, ∆𝜑, ∆𝜔), as observed in Equation (13). 

The LSM solution for r𝑏 can be obtained as: 𝐽𝑥 = 𝑦 + 𝑒. The 
goal of the LSM is to minimise the sum of all squared point-to- 
TIN patches. 

In the subsequent section, we describe the experiments. 
Note that, admitting a rough coarse registration estimate 
𝑝𝑇 − 𝑝𝑅 = 0 , as presented in Equation (8). Thus, both 

where 𝑛𝑇 = (𝑛𝑥, 𝑛𝑦 

𝑇 

, 𝑛𝑧) 𝑠 = 𝑑𝑇 − 𝑛𝑇 𝑝𝑅′ , 𝑑𝑇 represent the transformation parameters and attitude mounting 
misalignment are estimated without iterative matching. 

perpendicular distance from the origin to 𝑛𝑇 and 𝑝′ = R𝑝𝑅 + t 
that represents the transformation from 𝑝𝑅 to 𝑝𝑇 consists of a 
3D rigid motion. 

 

Thus, Equation (6) can be rewritten as follows: 

 
𝑝𝑇 = 𝑝𝑅 + [𝑑𝑇 − 𝑛𝑇(R𝑝𝑅 + t )]𝑛𝑇 (7) 

 

From Equation (7) can be express the following sentence: 

 

𝑝𝑇 − 𝑝𝑅 = 0 = [𝑑𝑇 − 𝑛𝑇(R𝑝𝑅 + t )]𝑛𝑇 (8) 

𝑛𝑇𝑑𝑇 − 𝑛𝑇(𝑛𝑇R𝑝𝑅) + 𝑛𝑇(𝑛𝑇t ) = 0 (9) 

𝑛𝑇(𝑑𝑇 − 𝑑𝑇
′) + 𝑛𝑇(𝑛𝑇t ) = 0 (10) 

𝑛𝑇t = 𝑑𝑇 − 𝑑𝑇
′ (11) 

 

The rotation R can be estimated as follows: 

 

𝑛𝑇
′ = R𝑛𝑇 (12) 

 
Assuming that for each pair of LiDAR strip exists a 

rotational and translational (Rℶ𝑖, tℵ𝑗) parameters, for 𝑖 = 0, … , 𝑘 

IV. EXPERIMENTS AND ANALYSIS 

To demonstrate the effectiveness of the proposed AMMC 
method, six flight trajectories were previously captured with the 
Velodyne VLP-16 Puck HI-RES laser scanner integrated with 
an Applanix APX-15 onboard on a DJI S1000 UAV platform. 
The accuracy achieved after post-processing with the POSPac 
software from Applanix is 0.0250 for pitch/roll and 0.080 for 
yaw, and the position accuracy is 0.02–0.05 m [13]. For the 
experiments, two flight lines with a 100% overlap in opposite 
directions and a flying height of 30 m, two flight lines with a 
50% in the same direction overlap and a flying height of 60 m, 
one flight line with a 30% overlap with respect to flight line 1 
and the same direction, and one flight line with 30% overlap 
with respect to flight line 3. 

The point clouds for each flight line were derived by using 
initial values of the attitude mounting misalignment set as a 
vector of zeros at the LiDAR equation. The positional offset 
between LiDAR relating to the GNSS/INS sensor were 
previously determined to better than 0.2 cm by topographic 
survey. Thus, the filtering process steps were previously 
executed. Afterwards, TIN structures were created from gabled 
roofs. The TIN patches extracted using the described tasks 
performed in light of the proposed method, is depicted in Fig 3. 
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Fig. 3. TIN patches generated through proposed pre-processing steps. 

 

Thus, the transformation parameters and the plane 
parameters are simultaneously estimated. Then, the attitude 
mounting misalignment are estimated based on the proposed 
TIN corresponding model. 

 

Fig. 4. RMSE of the point-to-TIN patch distances before and after AMMC 

method for each overlapping strip. 

 

The point-to-TIN patch distances between the manually 
extracted check-targets in the reference point cloud and the 
transformed point coordinates obtained after the attitude 
mounting misalignment calibration provide an indication of the 
discrepancies between the overlapping strips. Figure 4 shows the 
root square mean error (RMSE) of the point-to-TIN patch 
distances before and after AMMC method for each overlapping 
strip. 

 
Table I. Estimated attitude mounting misalignment using the 
TIN-based corresponding model. 

 

Attitude mounting misalignment 

∆𝜅 (degree) ∆𝜑 (degree) ∆𝜔 (degree) 

0.014±0.021 -0.0122±0.0017 0.001±0.0154 

 
Table I lists the attitude mounting misalignment estimated 

using the proposed method. The original LiDAR strips were 
reconstructed using the set of estimated attitudes. Fig. 5 shows a 
portion of the generated point cloud before and after AMMC 
method. 

 

 

 

 

 

 

 

Fig. 5. Generated 3D point cloud before (a) and after (b) proposed AMMC 

method. 

 

An example of a 3D point cloud of an urban environment, 
with different point of views, obtained with the proposed 
method is shown in Fig. 6. 

 

Fig. 6. 3D point cloud derived from the proposed method. 

 

For the quantitative assessment of the derived 3D point cloud 
from the proposed method, well-distributed target check points 
associated with their corresponding patches in the derived point 
cloud (see Fig. 7) were surveyed with a GNSS sensor. The mean 
and standard deviation of the point-to-TIN patch distances were 
computed. After the AMMC, the mean range from -1.5 cm to 
1.2 cm, whereas the standard deviations range from 1.1 cm to 
1.5 cm. Evidently, the proposed TIN-based corresponding 
model enables refined attitude mounting misalignment values. 
The mean computing time was around 100 s. 
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Fig. 7. RMSE of the point-to-TIN patch distances before and after proposed 

AMMC and the method of [13]. 

 

As a sanity check, the proposed method has been compared 
with the method of [13]. The RMSE of the normal distance of 
points from their corresponding planar patches was calculated 
for results obtained with the proposed AMMC method and the 
method of [13]. Fig. 6 shows the RMSE values obtained with 
the proposed method and the RMSE values obtained with the 
method of [13]. 

A. Discussions 

The proposed method was implemented with C++ by using 
Point Cloud Library on an Intel 3.60 GHz i7 CPU, 8 GB memory 
Ubuntu system. The testing procedure is performed offline and 
includes the following: (1) extraction of SIFT features, (2) 
matching of keypoints, (3) estimation of the initial 
transformation, (4) ground filtering process, (5) normal planar 
patch estimation jointly with the estimation of the 
transformation parameters, and (6) AMMC method. The 
estimation of the initial transformation with 3D keypoints 
generated via [15] is fast and essential to achieve good initial 
transformation for the attitude mounting misalignment. The 
main novelty of this work is the proposed TIN-based 
corresponding model without iterative matching procedure. It 
can incorporate a large number of reliable corresponding point- 
to-TIN patches, increasing its performance. The worst ∆𝜅 
estimation is most likely caused by the weak geometry of the 
patches. The attitude misalignments ∆𝜑 and ∆𝜔 are less 
sensitive and, consequently, are more precisely estimated. Good 
geometry thanks to significant variations in gabled roofs. 
Compared with plane-based approaches, the proposed method 
does not require planar segmentation. The method proposed in 
this study has the following advantages: (1) it is robust for 
outliers, (2) it is independent of the data mass, (3) it has better 
accuracy and saves more computational cost than [13], and (4) 
it exploits the full geometric richness of the scene by combining 
points and patches for the estimation of the attitude mounting 
misalignment. The main limitations are as follows: (1) the 
proposed model can only be used in environments modified by 
humans and (2) the lack of planar patches with different 
configurations affects the performance of the method, causing 
inconsistency in the refinement procedure. Notably, UAV 
LiDAR systems are being increasingly used in many geoscience 
applications, such as mapping, forestry inventory, power line 
inspection, vegetation management, hydrologic modelling and 
urban design. 

V. CONCLUSIONS AND FUTURE WORKS 

This paper presents an effective implementation for attitude 
mounting misalignment estimation method for the calibration of 
UAV LiDAR system. The proposed TIN-based corresponding 
model is quite robust for the estimation of the attitude mounting 
misalignment. This work exploits both points and patches within 
the calibration method. Firstly, the keypoint-based coarse 
registration step is used to estimate an initial transformation 
between LiDAR strips. Secondly, TIN patches are employed. 
The consequence is the important computational effect of 
having no both planar segmentation procedure and iterative 
matching requirements. The effectiveness of the proposed TIN- 
based corresponding model has been verified and can also be 
applied to other model fitting problems. The introduction of the 
proposed TIN-based corresponding model can estimate attitude 
mounting misalignment parameters without an iterative 
matching procedure. In the future, the proposed corresponding 
model will be improved for the use of multi-features and will be 
deployed on a mobile terrestrial platform. 
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