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Attitude Mounting Misalignment Estimation Method for the

Calibration of UAV LIDAR System by using a TIN-based
Corresponding Model

Abstract

In traditional attitude mounting misalignment estimation methods for the calibration of unmanned autonomous vehicle (UAV) based light
detection and ranging (LiDAR) system, signalized targets and iterative corresponding models are required, which makes it highly cost
and computationally time-consuming. This paper presents an attitude mounting misalignment estimation (AMME) method for the
calibration of UAV LiDAR system. The proposed method is divided into the coarse registration of LiDAR strips and the estimation of the
attitude mounting misalignment. Firstly, 3D keypoints are extracted in the point clouds using the scale-invariant feature transform (SIFT)
algorithm. Afterwards, the point feature transform (PFH) descriptor is used for 3D keypoint matching. Then, the coarse registration is
executed. In the second part of the contribution, the systematic errors in the attitude mounting misalignment are estimated by
incorporating the proposed triangular irregular network (TIN) corresponding model into the calibration modelling. Using the TIN-based
corresponding model saves time and cost for AMME method. Furthermore, it provides two important effects: practical and
computational, as no designed calibration boards, segmentation and iterative matching are needed. The performance of the proposed
method is demonstrated under an UAV LiDAR data onboarded with lightweight navigation sensors. The experimental results show the
efficacy of the method in comparison with a state-of-the-art method.
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accuracy. In addition, the mounting parameters between LiDAR

. INTRODUCTION and the integrated GNSS/INS sensors must be achieved to allow

A goal in geomatics is to develop a mobile mapping system
that can capture georeferenced 3D point clouds with positional
accuracy. Within various ascendant geo-technologies for spatial
data acquisition, unmanned autonomous vehicle (UAV) based
light detection and ranging (LiDAR) systems are highly
attractive because of their lightweight and ability to derive point
clouds with very high and homogeneous point density from the
environment.

During the mapping process, laser unit measurements, the
estimated platform’s trajectory obtained from a Global
Navigation Satellite System (GNSS) and an inertial navigation
system (INS) should be properly integrated with demanding
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UAV LiDAR systems to derive 3D point clouds with
centimetric positional accuracy. However, due to the systematic
errors of a UAV LiDAR data derived from GNSS/INS errors
and boresight angular error, point clouds derived with high
positional accuracy face a challenge. They must efficiently
detect the systematic georeferencing errors re-estimating the
entire  UAV LiDAR system mounting parameters. This
procedure is known as attitude mounting misalignment
calibration (AMMC).

Although existing AMMC methods are functional, they
require manual procedure for signalized targets, primitive-based
or ground-based
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approaches, and high computational cost. This paper presents a
triangular irregular network (TIN)-based corresponding model
for estimating attitude mounting misalignment to derive a high
positional 3D point cloud. A keypoint-based approach to avoid
iterative matching is also used. The proposed method
demonstrates that the introduction of a TIN-based
corresponding model can promote the practical effect at the
AMMC and at computational cost while segmentation and
iterative matching are not needed. The experiments show the
role of AMMC in the accuracy of the 3D point clouds. It also
demonstrates that the TIN-based corresponding model can
estimate attitude mounting misalignment without iterative
matching.

This paper is organized as follows. Section Il reviews the
related works in AMMC. In Section Ill, the TIN-based
corresponding model is given in detail. Section IV describes the
experiments and results obtained using the proposed method.
Finally, the paper is concluded in Section V.

Il. RELATED WORKS

During the last decade, the AMMC problem has been
intensively researched. These approaches are assembled into
two different groups: (1) strip adjustment and (2) AMMC
methods. In strip adjustment methods, the systematic errors are
modelled in the object domain. Surfaces or features derived
from the LiDAR data natural are widely used to find the
transformation parameters between overlapping LiDAR strips.
In Kilian et al. [1], a polynomial model was previously
introduced to determine the discrepancy over LiDAR strips.
Although it allows the tridimensional assessment of relative
accuracy, designed calibration boards covered by highly
reflective surfaces are mandatory. To avoid calibration field
boards, a plane-based approach is proposed in [2]. The LiDAR
data accuracy is achieved via surfaces previously matched.
Vosselman [3] formerly introduced linear features for the strip
adjustment procedure. In Van der Sande et al. [4], point-to-plane
distances were reliably used as observables into least-squares
method (LSM) for the assessment of relative accuracy of LIDAR
data. According to Filin [5], non-rigorous approaches focus on
the effect of the systematic errors omitting the causes of the
source errors derived from lightweight GNSS/INS and laser
sensors onboard the UAV. Furthermore, primitives rely on
segmentation, in which there are computationally non-attractive,
manual interventions might be necessary and can affect the
quality of the adjustment step.

By contrast to strip adjustment approaches, AMMC methods
investigate the sources derived from systematic errors.
Furthermore, the attitude mounting misalignment and other
calibration parameters can be used to model the point cloud. In
Skaloud and Lichti [6], gabled roofs were manually extracted in
the LiDAR data, and a constraint is used to assurance reliability
in the LSM mounting parameters solution. Although, no
additional calibration field is needing the method depends on
segmentation procedures. In Habib et al. [7], the effect of the
systematic errors was modelled calculating the discrepancies
between pairs of LIDAR strips, while the trajectory errors were
used for the estimation of the mounting parameters. The authors
proposed a variant of iterative closest point, proposed by [8], to
find the patch correspondences, called ICPatch. However, the
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mentioned algorithm is iterative and time consuming. A spline
trajectory correction model for the modelling of trajectory errors
was previously proposed in [9]. A point-to-plane corresponding
model was previously used to the estimation of the mounting
parameters jointly with the correction errors task. This is done
iteratively using the residual vector between closest points and
their normal vectors. In Ravi et al. [10], primitive-based were
used to find the attitude mounting misalignment of a UAV
LiDAR system onboarded with lightweight positional, inertial
and active sensors. However, the authors used a designed
calibration board for the automatic identification of primitive
correspondences. Furthermore, the method also depends on
rigorous flight configurations. A variant of the [9] also was used
for AMMC of a mobile terrestrial and UAV LiDAR systems in
[11]. However, the method is computationally non-attractive
and manual interventions are mandatory. Zhang et al. [12] have
presented a mounting parameters error rectification approach,
which aims at the iterative updating of boresight errors using 3D
matched points obtained on laser intensity information. For each
iteration an approximate solution is obtained using the LSM.
Although efficient, the algorithm is highly time-consuming. In
de Oliveira and dos Santos [13], a AMMC of UAV LiDAR
systems with refinement of the attitude mounting misalignment
using a point-to-plane approach was previously presented. The
mounting parameters are estimated conditioning the centroid of
a plane segmented to lie on its corresponding segmented plane
without an additional surveying campaign. Then, the attitude
mounting misalignment are refined using a new point-to-plane
model. Although the proposed constraint can guarantee that the
calibration parameters are correctly estimated even when the
GNSS/INS trajectory is highly noised, is highly demanded the
iterative refinement of the attitude mounting misalignment. It
also depends on segmentation.

—
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Fig. 1. Generic structure of the proposed method.

Contrary to the aforementioned approaches, using the TIN-
based corresponding proposed model saves time and
computational cost for AMMC, as no designed calibration

Page No:42



Lotus International | ISSN:1124-9064

boards and segmentation are needed. It can also avoid iterative
matching, as used for the ICPatch algorithm.

IIl.  ATTITUDE MOUNTING MISALIGNMENT

This paper follows the concept of AMMC by using a TIN-
based corresponding model. The main aspect of this approach is
the development of a TIN-based corresponding model for
AMMC. The architecture of the proposed AMMC method
consists of six main steps, as illustrated in Figure 1. In particular,
it uses a non-iterative TIN-based approach without segmentation
requirements.

From the raw UAV LiDAR data, a set of 3D point clouds are
created. Secondly, the proposed method uses a statistical outlier
removal algorithm in order to detect and remove outliers [14].
Afterwards, a keypoint-based coarse registration by combining
an adaptation of scale invariant feature transform (SIFT)
algorithm with the formulation of the point feature histogram
(PFH) descriptor [15] is used to coarse registration step.
Fourthly, gabled roofs are extracted by combining the
progressive morphological filter [16] and the random sample
consensus algorithm [17]. Thus, the transformation parameters
jointly with the plane parameters are estimated. Finally, a TIN-
based corresponding model is incorporated into the functional
model of the AMMC method for the estimation of the attitude
mounting misalignment.

A. Point cloud generation by using the LiDAR Equation
Typically, three coordinate systems, namely, mapping frame
(m), INS body frame (b) and laser unit frame (I) are involved in
the LIDAR Equation. The p7(¢) in the time ti can be written as:
pm(ti) = am  (ti) + rm(t)[rori(td) + ab ] @

Jj nav b Lj nav

where an,,(ti) represents the position at time ti of the
GNSS/INS in m, rjp(ti) is the attitude between the INS and m,
rp denotes the boresight matrix between the laser unit and the
INS, rj!(ti) is the coordinate vector of j-th pointinland a?
the fixed lever-arm vector.

B. Outlier detection and filtering

In point cloud processing, noise points can easily corrupt
matching process. Thus, detect and remove outliers is an
important step for future procedures. Herein, the outliers are
detected by analysing a query point p, with respect to its
surrounding neighbours k via the statistical outlier removal
algorithm [14]. Basically, given a reference strip (X), the mean
distance d, between each p, € X and its k neighbours is
computed, resulting in a filtered strip (X').

C. Coarse registration by keypoint-based approach

The keypoint-based coarse registration is used by combining
an adaptation of SIFT algorithm with the PFH’s descriptor
formulation [15]. Firstly, the SIFT algorithm detect edges in 3D
using difference-of-gaussian scale-space. Afterwards, a search
radius is selected and the normal of each point into search radius
is computed. Then, a Darboux frame with origin at 3D keypoint
is computed for each pair of points, as follows:
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e=n
(pi—p))
u=ex —=_ 2
{ [lpi—pjll @)
v=exu

where n represents the normal vector of point.
Thus, the actual descriptors for (p;, p;) can be computed to

express the difference between n and those of its neighbourhood
points p; [15]:

a = arccos(u-n)

B = arccos (e- PP
Ipi—pjll ©)
Q =arctan(v-n,e-n)
{ d=|lp:—pjll

where d represents the distance between the origins of the
coordinate systems.

The PFH algorithm generate a 33-bin PFH histogram for
each pair of LIDAR strip. Thus, the correspondences are
established, and the initial transformation parameters are
coarsely estimated a transformation using a global affine
transformation matrix, as follows:

pi=Fp;+b @
where p; and p; are pairs of corresponding 3D key points, F
represents a coefficient matrix, and b is the translation vector.

D. Estimation of the attitude mounting misalignment by using

the proposed TIN-based corresponding model

This paper introduces a TIN-based corresponding model to
estimate the attitude mounting misalignment minimizing the
sum of the distance between points and corresponding TIN
patches. Typically, the TIN structure is formed with several
planar patches. Thus, to reduce the number of existing primitives
in the LiDAR strips, a progressive morphological filter [16] is
used. Firstly, an erosion followed by a dilation process is
applied. The large non-ground objects remain while small
vegetation is removed. Secondly, the height difference between
the original LiDAR data and the initial filtered surface is
calculated. Again, the erosion followed by dilation is executed.
Finally, a new filtered surface is determined. The gabled roof is
remained in the point cloud, while the vegetation is removed
using the random sample consensus algorithm [17].

Herein, a TIN is created from gabled roof objects using the
method described in [18]. This paper recovers the TIN patch
parameters jointly with the transformation parameters in a
combined LSM solution expressed as:

(nr,c, R t) ®
wheren,. = [n, ny,nz] T, R is the 3x3 rotation parameters and

t is the 3x1 translation parameter. The method uses the
constrain introduced in [13] to forces the centroids (c) to belong
to its corresponding patch.
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Thus, each point p;. in the target point cloud & "is computed
via the intersection between an orthogonal projected line from
pr toits corresponding TIN patch into the reference point cloud
Q' (see Figure 2).

Pr

¥}

Fig. 2. Conceptual basis of the proposed corresponding model.

The intersection between a orthogonal projected line and a
TIN patch is as follows:

pr = pr +snr ©6)
T
where nr = (n,ny,n,) , s =dy —nrpg , dr represent the

perpendicular distance from the origin to ny and pr = Rpg +t
that represents the transformation from pg to pr consists of a
3D rigid motion.

Thus, Equation (6) can be rewritten as follows:

pr = pr + [dr — nr(Rpr + t)]nr @)

From Equation (7) can be express the following sentence:

pr —pr = 0 = [dr —nr(Rpr + t)]nr ®)
nrdr — ny(nrRpgr) + nr(nrt) = 0 ©
nr(dr — dr) + np(nrt) = 0 (10)
nrt = dr — dT, (11)

The rotation R can be estimated as follows:

TLT’ = RnT (12)

Assuming that for each pair of LiDAR strip exists a
rotational and translational (R; ty;) parameters, fori = 0, ..., k
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and j =i + 1; by substituting Equation (1) in the pg of Equation
(7) and rearranging the terms of this equation, the following
expression is obtained:

TLTT = —dT (13)

where T =R i (nr7 [a™ (t) + r(O)[rbri +ab 1)+t
ul nav b lLj X

a nav

Thus, three separate sets of equations per TIN
correspondences are formulated, one for estimation of ty; (see
eg. 11), in which the LSM solution can be solved by using
equations Bt = y + e , where B and y are obtained by
assembling nr and dr — dT' for all TIN-to-TIN
correspondences and e contains the residual values.

The LSM solution for tg; can be obtained as: fxy =
(B™B)~'BTy. The second equation for the estimation of R-;
(see eg. 12), in which is obtained using Horn’s solution [19]. The
third equation for the estimation of the attitude mounting
misalignment r? (Ax, A, Aw), as observed in Equation (13).
The LSM solution for r can be obtained as: Jx = y + e. The
goal of the LSM is to minimise the sum of all squared point-to-
TIN patches.

In the subsequent section, we describe the experiments.
Note that, admitting a rough coarse registration estimate
pr—pr =0, as presented in Equation (8). Thus, both

transformation parameters and  attitude  mounting
misalignment are estimated without iterative matching.

IV. EXPERIMENTS AND ANALYSIS

To demonstrate the effectiveness of the proposed AMMC
method, six flight trajectories were previously captured with the
Velodyne VLP-16 Puck HI-RES laser scanner integrated with
an Applanix APX-15 onboard on a DJI S1000 UAV platform.
The accuracy achieved after post-processing with the POSPac
software from Applanix is 0.025° for pitch/roll and 0.08° for
yaw, and the position accuracy is 0.02-0.05 m [13]. For the
experiments, two flight lines with a 100% overlap in opposite
directions and a flying height of 30 m, two flight lines with a
50% in the same direction overlap and a flying height of 60 m,
one flight line with a 30% overlap with respect to flight line 1
and the same direction, and one flight line with 30% overlap
with respect to flight line 3.

The point clouds for each flight line were derived by using
initial values of the attitude mounting misalignment set as a
vector of zeros at the LIDAR equation. The positional offset
between LIDAR relating to the GNSS/INS sensor were
previously determined to better than 0.2 cm by topographic
survey. Thus, the filtering process steps were previously
executed. Afterwards, TIN structures were created from gabled
roofs. The TIN patches extracted using the described tasks
performed in light of the proposed method, is depicted in Fig 3.
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Fig. 3. TIN patches generated through proposed pre-processing steps.

Thus, the transformation parameters and the plane
parameters are simultaneously estimated. Then, the attitude
mounting misalignment are estimated based on the proposed
TIN corresponding model.
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Fig. 4. RMSE of the point-to-TIN patch distances before and after AMMC
method for each overlapping strip.

The point-to-TIN patch distances between the manually
extracted check-targets in the reference point cloud and the
transformed point coordinates obtained after the attitude
mounting misalignment calibration provide an indication of the
discrepancies between the overlapping strips. Figure 4 shows the
root square mean error (RMSE) of the point-to-TIN patch
distances before and after AMMC method for each overlapping
strip.

Table I. Estimated attitude mounting misalignment using the
TIN-based corresponding model.

Attitude mounting misalignment
A (degree)
-0.012240.0017

Ak (degree)
0.014+0.021

Aw (degree)
0.001+0.0154

Table | lists the attitude mounting misalignment estimated
using the proposed method. The original LiDAR strips were
reconstructed using the set of estimated attitudes. Fig. 5 shows a
portion of the generated point cloud before and after AMMC
method.
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(b)
Fig. 5. Generated 3D point cloud before (a) and after (b) proposed AMMC
method.

An example of a 3D point cloud of an urban environment,
with different point of views, obtained with the proposed
method is shown in Fig. 6.

Fig. 6. 3D point cloud derived from the proposed method.

For the quantitative assessment of the derived 3D point cloud
from the proposed method, well-distributed target check points
associated with their corresponding patches in the derived point
cloud (see Fig. 7) were surveyed with a GNSS sensor. The mean
and standard deviation of the point-to-TIN patch distances were
computed. After the AMMC, the mean range from -1.5 cm to
1.2 cm, whereas the standard deviations range from 1.1 cm to
1.5 cm. Evidently, the proposed TIN-based corresponding
model enables refined attitude mounting misalignment values.
The mean computing time was around 100 s.
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Fig. 7. RMSE of the point-to-TIN patch distances before and after proposed
AMMC and the method of [13].

As a sanity check, the proposed method has been compared
with the method of [13]. The RMSE of the normal distance of
points from their corresponding planar patches was calculated
for results obtained with the proposed AMMC method and the
method of [13]. Fig. 6 shows the RMSE values obtained with
the proposed method and the RMSE values obtained with the
method of [13].

A. Discussions

The proposed method was implemented with C++ by using
Point Cloud Library on an Intel 3.60 GHz i7 CPU, 8 GB memory
Ubuntu system. The testing procedure is performed offline and
includes the following: (1) extraction of SIFT features, (2)
matching of keypoints, (3) estimation of the initial
transformation, (4) ground filtering process, (5) normal planar
patch estimation jointly with the estimation of the
transformation parameters, and (6) AMMC method. The
estimation of the initial transformation with 3D keypoints
generated via [15] is fast and essential to achieve good initial
transformation for the attitude mounting misalignment. The
main novelty of this work is the proposed TIN-based
corresponding model without iterative matching procedure. It
can incorporate a large number of reliable corresponding point-
to-TIN patches, increasing its performance. The worst Ak
estimation is most likely caused by the weak geometry of the
patches. The attitude misalignments Ap and Aw are less
sensitive and, consequently, are more precisely estimated. Good
geometry thanks to significant variations in gabled roofs.
Compared with plane-based approaches, the proposed method
does not require planar segmentation. The method proposed in
this study has the following advantages: (1) it is robust for
outliers, (2) it is independent of the data mass, (3) it has better
accuracy and saves more computational cost than [13], and (4)
it exploits the full geometric richness of the scene by combining
points and patches for the estimation of the attitude mounting
misalignment. The main limitations are as follows: (1) the
proposed model can only be used in environments modified by
humans and (2) the lack of planar patches with different
configurations affects the performance of the method, causing
inconsistency in the refinement procedure. Notably, UAV
LiDAR systems are being increasingly used in many geoscience
applications, such as mapping, forestry inventory, power line
inspection, vegetation management, hydrologic modelling and
urban design.
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V. CONCLUSIONS AND FUTURE WORKS

This paper presents an effective implementation for attitude
mounting misalignment estimation method for the calibration of
UAYV LIiDAR system. The proposed TIN-based corresponding
model is quite robust for the estimation of the attitude mounting
misalignment. This work exploits both points and patches within
the calibration method. Firstly, the keypoint-based coarse
registration step is used to estimate an initial transformation
between LiDAR strips. Secondly, TIN patches are employed.
The consequence is the important computational effect of
having no both planar segmentation procedure and iterative
matching requirements. The effectiveness of the proposed TIN-
based corresponding model has been verified and can also be
applied to other model fitting problems. The introduction of the
proposed TIN-based corresponding model can estimate attitude
mounting misalignment parameters without an iterative
matching procedure. In the future, the proposed corresponding
model will be improved for the use of multi-features and will be
deployed on a mobile terrestrial platform.
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