

A State of Art: Survey for Concurrent Computation and

Clustering of Parallel Computing for Distributed Systems

Abstract

In this paper, several works have been presented related to clustering parallel computing for distributed systems. The trend of the paper

is to focus on the strengths of previous works in this field towards enhancing the performance of distributed systems. This concentration

was conducted by presenting several techniques, each of which has weak and strong features. The most challenging points for all

techniques vary from increasing the performance of the system to time-responding to overcome overhead running of the system. For a

more specific approach to addressing concurrent computation besides parallel computing classifications for distributed systems, this

paper relies on a comprehensive feature study and comparison between SYNC and ASYNC modes.

Keywords: Distributed Computing, Distributed Systems, Clustering System, Parallel Systems.

I. INTRODUCTION

Nowadays, accessing to the Internet services continuously is
important and vital for the most of people [1]–[3]. The
distributed systems are separated design that makes the worst-
case assumptions [4]–[6]. It is the combination of
geographically separated and heterogeneous nodes that perform
the applications [7], [8] . The challenging issues that facing a
wide range of computing areas such as the social computation,
web search and others require a big momentum to reach the
convergence condition. This is due to the complex and diversity
of the data structures and their sizes which needs a more
computation iteratively [9]. Hence, many approaches have been
proposed to handle with the computation of the large dataset.
For instance, the machine learning techniques known Tensor

Flow has been proposed [10]. This system operates in large scale
in heterogeneous conditions and it is inherent or extending from
the Distbelief system which has been utilised by Google since
2011 [11]. The feature of this system is using the parameter
server architecture which has some limitation and it leads to
propose the Tensor Flow system which uses dataflow graphs to
reproduce the computation, shared state and the operations state.
It connect several dataflow graph nodes in a cluster considering
into account the several machines within the multiple
computational machines such as the devices including the
multicore unit processes. The algorithms used in this system
contain iterative and conditional control as a result of using them
within advanced machine learning systems for instance using it
in a recurrent neutral network (RNN) [12]–[14] and in long short

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:51

term memory (LSTM) [15], [16]. More detail has been given in
Table II.

Considering the philosophy of think as vertex that proposed
by Malewicz et al. [17] in which the coding graph computation
is represented as a vertex centric programs. This process vertex
in parallel form and the communication is obtained along edges.
Typically many machine learning and data mining issues usually
appear iterative computation nature by refining input data until
a convergence condition is reached [18], [19]. The development
of some iterative and convergences lead to introduce two
execution modes called synchronous and synchronously, see
section 2 for more detail. Increasing the number of potential
workers within the parallel computing systems is considered as
a recent advanced technique within the computing architectures
networking which results to increase also the masses [20]. In
particular, recently the two of the important technological
development are ongoing related to the computing spectrum
which are working independent and are different in terms the
scale in which as small scale execution units (i.e. cores) at the
point within CPU which can be taking into account as a parallel
shared memory computer. On the other hands, at the large scale
units, there several advantaging with using this scale such as in
the Cloud computing paradigm in which the applications can use
these large scale units for pay-as-you-go model [21], [22].
However, most of the works used the computer simulation
software program to observe the scale and concluding the
obstacles that facing the models before it goes in the practical
application or in real life of application such as the Discrete
Event Simulation (DES) that proposed and explained in detail
by Law & Kelton in which the evolution of any considered
model occur at the nodes in time by means of simulation events.
Furthermore, the implementation of DES is obtained by using
some state variables, global clock that represents the ongoing
simulation time [23].

Parallel and distributed simulation (PADS) depends on the

partition of the simulation models across the several execution
units. Each of them is responsible for part of the model on the
other words each PADS is dealing with its local event list hence
it fully local. However, local generate events could require to be
sending to remote execution units and this could lead to
minimize of the run time cost which has a good impact in the
efficiency of the model. Another positive impact of using this
tool is the possibility of integrating simulators in geographically
distributed which integrates a set of commercial off as a result
of a single simulator of the composition of the different
simulation models [24].

Scheduling tasks (algorithms) have an important role in

improving the in enhancement of the performance of the
distributed system because of minimizing the overall execution
time and reducing the overhead problems such as the delaying
of communication which is allocated a suitable task to
redistributes the processor [25]. Two types of scheduling
algorithm are introduced known static and dynamic scheduling.
In general the static scheduling does not prefer to be
implemented in distributed computing system due to the
principle work of it in which the scheduling occurs before the

application running which result of uncertainty [26], [27].
Hence, the dynamic scheduling is a good alternative with the
distributed computing system. There are different scheduling
techniques are employed for task scheduling some of them is
presented in section 3.

The Grid Computing concept is used in the distributed
system or cluster of workstations to enable the user task to be
online at anytime and anywhere. But unfortunately this leads to
raising the issue of uncertainty in scheduling process such as
Google search service in which a large number of users over the
world send their keywords queries to the Google servers and
search engines utilise the MapReduce technique to split the
requested queries into some specific groups or categories of
tasks and then matching these tasks into servers for execution
which result three types of uncertainties. The first type of
uncertainty obtains due to the number of tasks. Because the time
and which kind of search query user, that will be received by
servers, are unknown. Second type is related to the duration of
processing unit the convergence is obtained here the
convergence is focusing to the evaluation of network delay. To
solve this problem Markov Decision Process (MDP) is
introduced which allocates the receiving task and execution
pattern with free of uncertainty [28].

II. SYNC AND ASYNC MODES COMPARISON

These modes are used for transmission synchronization in
which the principle work of two modes is different in the
performance in execution stages and also across different graph
algorithms such as the SYNC mode is able to minimize the
communication cost time and I/O bound algorithms via
gathering the massages together. Whereas ASYNC mode the
convergence needs less time and it favors CPU bound
algorithms such as PageRank obtain much better with using
ASYNC mode [29]. But Loopy Belief Propagation significantly
executes better with ASYNC mode [30] and also it show a good
performance in graph colouring in which with SYNC mode it is
impossible to obtain the convergence [31]. AYSNC has a good
respond with the starting and ending of Signal Source Shortest
Path (SSSP) conversely to SYNC mode in which superior
performance is happen throughout the middle of execution. This
is attributed to convergence rate, computation and
communication load in various execution steps. Taking into
account the principle idea of graph parallel systems that divided
the computation logic scheduling order in which both of them
provide different visibility timing of update variables for
subsequent of the computation vertex. In figure 1 the execution
flow of SYNC is presented in which the execution of vertices in
the sample graph are fixed in order with in every iterations and
the boundary limitation between the consecutive iterations
grantees that all vertex are updated within considering iteration
and visible in the next iteration for all workers. Whereas in
ASYNC the updating is not in order within the sample graph due
to the lack of barrier. Therefore, they have different features as
listed in Table I. On the other hand, the configuration such as
clusters scale, the size of data and graph partition methods have
impact to the efficiency of two modes.

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:52

Fig. 1: The execution flows between SYNC and ASYNC modes.

TABLE I: THE COMPARISON BETWEEN SYNC AND ASYNC [5].

uniform rate. While the co-scheduling type has different
principles that would be explained in the following section in
details with presenting three type of it [35], as illustrated in
figure2.

 SYNC ASYNC

Features

Communication Regular Irregular

Convergence Slow Fast

Favourites

Algorithm I/O intensive CPU intensive

Execution Stage High Workload Low Workload

Scalability Graph size Cluster Size

III. SCHEDULING ALGORITHMS TECHNIQUES

The term scheduling can be defined as "A set of tasks such
as T can be executed on P processors by some optimization
criteria C" [32], [33]. The main purpose behind using the
scheduling algorithms is to organize the various tasks to
processors with targeting of improving the execution speed,
minimising the runtime of tasks and reducing the
communication delay and communication cost [34]. In general,
the whole tasks in the distributed scheduling can be divided into
sub-tasks which assign many processors. Hence they conducted
work more quickly as compared with single processor and at the
same time the scheduling algorithms of the pre-specified
precedence is committed among various tasks [35]. From the
above, the best scheduler should be applicable for general
purposes such as it should be: a) Efficient (i.e. enhancing the
work of the system and reducing overhead problems. b) Fair (i.e.
maintaining load and then balancing it when scheduler has many
tasks to be executed). Transparent (i.e. it means that the results
is not affecting by local or remote site executions). Dynamic (i.e.
it means that the scheduler will be classify as good if it responds
to local changes and it avail from all resources that is available.
The Scheduling techniques can be classified into two types: co-
scheduling and local scheduling in which the second type
contains the predictive which is easy to adopt new architectures
that are capable of sharing the executions proportionally at a

IV. LOCAL SCHEDULING

The local scheduling needs global information for
increasing the performance of the system and so far many
techniques have been developed such as proportional sharing
and predictive schedules [36]. In wireless network, the local
scheduling has proven a significant improvement or efficient
compared with the traditional routine system in which the
topology of wireless breaks down into several sub-graph and
also the performing the end to end transmission of varies
forwarded is obtained [37]. The important of the proportional
sharing scheduling comes into play with incurred problems
throughout the traditional priority- based schedulers which
needs long time for allocating the processors. In the work of
Regehr [38] the technique called Pessimism is introduced in
proportional sharing to improve the performance and to remedy
the error problem as well as meet the deadline of different real-
time applications. An example of this type of scheduling is
Stride Scheduling. It illustrates in fair manner the process of the
allocation of jobs and how the resources are used up to single
processor when many users have to execute their tasks. In this
scheduling the hold numbers of tickets are released for all users.
These numbers are in the proportion of resources and they have
a time interval that is known as stride and they are inversely to
allocation of tickets which aids to give a decision about how
quick it comes in usable state [39]. Furthermore, the pass is
connected with each user and a user holds a minimum pass is
scheduled in the time interval with incrementing by job stride.
The validation can be performed by two ways: one is
implemented by prototypes for Linux Kernel and a other
evaluation is performed by using the simulation.

There is an extension to Stride Scheduling which is not only
used for I/O and intensive jobs, but is also can be used for CPU-
bound jobs. The main idea behind this extension state that it is
necessary to improve response time and through put rather than
concentrating into resources for competing users. To obtain this,
two approaches is proposed: one is working as credits and

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:53

another is loan and borrow (i.e. many users have the exhausted
tickets and if any user wants to withdraw from the system
another user will take his place via his tickets, otherwise the
ticket will be deactivated). While, in the credits, the system is an
approximated and it is easy to be implemented due to not
needing any type of overhead. Referring to the figure 2, there is
another sub-division of local scheduling called predictive
scheduling that supplies the adaptivity, intelligence and
proactive kind of scheduling to the system. Consequently, it has
the capability of good performing in any kind of condition. The
feature of embedded in new kind of architectures is easy to be
implemented and it can be categorised into three major
components: a) allocator, b) S-Cell, and 3) H-Cell [40].

V. CO-SCHEDULING

In general terms, scheduling is utilized for scheduling the
interactive activities for example all execution jobs are happing
simultaneously and locally within the workstations [41]. The
most well-known work was conducted by Frachtenberg and et
al. [42]in which the flexible co-scheduling is proposed that
address the issue of external and internal fragmentations. In this
kind of scheduling, synchronization among processors plays an
important key in its implementation and also in the requirement
of load balancing. Proper working of resources and recovery all
issues appeared and rising in multi-core system can be obtained
via using the co-scheduling such as the work of Schönherr et al.
[43]. Several challenging points that facing the co-scheduling
algorithms that used for time sharing clusters are presented by
Choi [44] in which the privilege of the genetic framework is
used for identifications. There are three types of co-scheduling,
as shown in figure 2, as follow: a) gang co-scheduling, in this
type the jobs are making reference as gang and its member is

considered as gang member. They allocate to class in which
signal processor is able to sign through one gang member to
execute it in parallel. It principle work is based to control all job
members and assigns another job to that class when the
timestamps is ended. This means the whole work of this co-
scheduling is centralized control and this is one of its main
drawbacks. This leads to bottleneck when the load is heavy.
However, this kind of scheduling is improved its principle work
by combining it with backfilling to overcome the
aforementioned weak point, see the work of Zhang et al. [45].
b) The second type is called implicit co-scheduling which is also
known as time-sharing communication process. It works fully
local and the schedules are processed separately and it is making
separate decisions instead of centralized policy as in the first
type [36]. c) Dynamic co-scheduling is used to do the decisions
when the arrival of massages and no need for explicit
information to identify the process that requires co-scheduling.
This type minimizes the response time up to 20 % compared to
type (b) and it is more effective and robust [46].

Mohtajollah and Adibnia [47] proposed an algorithm for
parallel job scheduling in cloud computing. They used tentative
runs, workload consolidation and two-tier virtual machines
architecture. Moreover, the performance improved and parallel
jobs starvation was prevented by considering jobs deadline. The
experimental results illustrated the introduced algorithm
reduced waiting time and it could be utilized as an effective
technique for scheduling parallel jobs in the cloud computing.

Xu et al. [48] optimized parallel jobs’ scheduling

performance in big data systems. They proposed machine
learning algorithm based on k-mean clustering in heterogeneous
clusters. The main purpose of the introduced method was to
integrate various computing, storage, and network resources into

Fig. 2: The scheduling techniques [25].

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:54

scheduling strategy. The results showed that the presented
algorithm enhanced execution time in single job scheduling and
parallel job scheduling by 25% and 30%.

Lepakshi and Prashanth [49] proposed a method for task
scheduling in a reliable way in cloud computing systems. The

researchers considered earliest finish time and delays to assign a
normalized score to the processor for scheduling tasks for a
bounded number of heterogeneous virtual machines. The
performance of the method improved by 100% in term of the
operational availability and 22% for a sample graph in compared
with other methods.

TABLE II: THE SUMMERY OF THE SELECTED OF THE UNDERTAKEN PAPERS IN THIS REPORT.

No.
Compared

Reference
Strong points Weak points

1.
Tyagi &

Gupta, [16]
 Presenting some techniques of the scheduling that have a good impact of

improving the performance of processors

 The single scheduling task is suffering from

overhead running and also the execution time is

higher than the multi scheduling task

2.

Martin Abdi

& et. al, [6]

 Connecting many data flow graph nodes crossing into multiple machines in a

cluster or within a single machine a crossing multiples computational devices.

These devices can be represented by CPUs, GPU, and TPUs (Tensor

Processing Units) which's known as custom designed ASICs.

 TensorFlow has widely used in machine learning research and application in

which several Google Services use this technique

 The unified dataflow graph is used with the TensorFlow for representing both

the computation and operations in algorithms

 The lack of default polices that work well for all

users and all levels are still need to be

determined. Hence more researches should be

performed to overcome this gap and automatic

optimization should be obtained with this

model.

 Transparent and efficient distribution of

resources is faced this system even when the

computation structure was unfold dynamically.

2.

Xie, et al.,

[5]

 The synchronous (SYNC) and Asynchronous (ASYNC) modes have different

performances with different graph algorithms such as in cluster scales, input

graphs and partitioning approaches which leads to obtain a hybrid constant

gathering execution statistics directly which the prediction of future

performance and determining could be profitable.

 There is still the luck of information on SYNC

and ASYNC execution properties thus we have

to manually select the mode.

4.

D’Angelo &

Marzolla,

[12]

 This parallel and distributed mechanism is capable to adapt with the application

with preserving the same computing architecture most of the current

approaches are unable of performing that aforementioned mechanism.

 It works well in both setting in multicore process and cloud system.

It reduces communication cost via removing the notes from the execution

architecture in other words migrating the components of simulation

 The sows some fault tolerance with new type of

software layer called GAGA (Generic Adaptive

Interaction Architecture) which more details

can be found in [37, 38]

 The complexity level is obtained by hardware

and it cannot be ignored and it should be

carefully selected and availed by application

level

5.

Tong, et al.,

[19]

 The proposed method has the capability of adaptivity for the arrival tasks

without requirement of the knowing the prior knowledge about the task and it

have the feature of auto save (i.e. dynamic robustness) of the task in which the

system can respond and execute to the forthcoming tasks

 It shows the fair or average response time

compared with some typical heuristic

approaches

6.

Mohtajollah

and Adibnia

[47]

 The authors used several techniques to propose a new algorithm in order to

improve job scheduling in cloud computing.

 The make-span of the job scheduling was reduced and maximum waiting time.

 The researchers only depended on two metrics

for measuring the performance of job

scheduling. Also, the average waiting is not

improved by the proposed algorithm. The

comparison with related works in the research is

not performed.

7.

Xu et al.

[48]

 Task scheduling algorithm is prepared based on K-mean clustering. The
performance of the single and parallel scheduling is enhanced by 25% and 30%.

 The performance of the proposed machine learning algorithm is performed in
three tests: simulation, virtual machine and real performance computing.

 The performance of the presented method is

only based on the job scheduling time

parameter. The comparison with previous

works is not accomplished.

8.

Lepakshi

and

Prashanth

[49]

 The researchers proposed a heuristic method for task scheduling in cloud

computing. Numerous metrics were utilized for the performance of presented

algorithm. The performance of the technique is compared with another

algorithm.

 The proposed method obtained better results in

dynamic cloud computing, However, the

authors did not mentioned the algorithm

performance real environment.

VI. DISCUSSION

Due to the increasing demand of using the internet in which
the computation system area plays an important part of it, there
are several issues facing that area such as social computation and
web search which needs a huge effort to overcome them and

obtaining the convergence condition. Hence, many works have
been conducted for that purposes and in the Table II several
works have presented illustrating the weak features (e.g.
overhead running and the execution time) and strong features
(e.g. improving the performance of processors) of each work. In
this paper, various works has been presented related to the

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:55

clustering parallel computing for distributed system. The most
challenging points for all techniques vary from increasing the
performance of the system to time responding to overcome
overhead running of the system.

VII. CONCLUSION

It seems from the Table II that the issues are still the
challenging are not overcoming and it is required from the
computer community more effort, however, by merging some
existing techniques such as machine learning and the
development of storage memory and responding to the
execution gives an optimistic vision that these challenging will
be in minimum level in the future. However, it can be concluded
that modern previous works working on connecting many data
flow graph nodes crossing into multiple machines in a cluster or
within a single machine a crossing multiples computational
devices. Adding to that, it can be observed that parallel and
distributed mechanism is capable to adapt with the application
with preserving the same computing architecture.

REFERENCES

[1] R. R. Zebari, S. R. Zeebaree, and K. Jacksi, “Impact Analysis of HTTP

and SYN Flood DDoS Attacks on Apache 2 and IIS 10.0 Web Servers,”

in 2018 International Conference on Advanced Science and Engineering

(ICOASE), 2018, pp. 156–161.

[2] S. R. Zeebaree, K. Jacksi, and R. R. Zebari, “Impact analysis of SYN

flood DDoS attack on HAProxy and NLB cluster-based web servers,”

Indonesian Journal of Electrical Engineering and Computer Science, vol.

19, no. 1, pp. 510–517, 2020.

[3] S. R. Zeebaree, R. R. Zebari, and K. Jacksi, “Performance analysis of

IIS10.0 and Apache2 Cluster-based Web Servers under SYN DDoS

Attack,” TEST Engineering & Management, vol. 83, no. March-April

2020, pp. 5854–5863, 2020.

[4] H. Shukur, S. Zeebaree, R. Zebari, O. Ahmed, L. Haji, and D.

Abdulqader, “Cache Coherence Protocols in Distributed Systems,”

Journal of Applied Science and Technology Trends, vol. 1, no. 3, pp. 92–

97, 2020.

[5] L. M. Haji, S. R. Zeebaree, O. M. Ahmed, A. B. Sallow, K. Jacksi, and

R. R. Zeabri, “Dynamic Resource Allocation for Distributed Systems

and Cloud Computing,” TEST Engineering & Management, vol. 83, no.

May/June 2020, pp. 22417–22426, 2020.

[6] H. Shukur, S. Zeebaree, R. Zebari, D. Zeebaree, O. Ahmed, and A. Salih,

“Cloud Computing Virtualization of Resources Allocation for

Distributed Systems,” Journal of Applied Science and Technology

Trends, vol. 1, no. 3, pp. 98–105, 2020.

[7] H. I. Dino, S. R. Zeebaree, O. M. Ahmad, H. M. Shukur, R. R. Zebari,

and L. M. Haji, “Impact of Load Sharing on Performance of Distributed

Systems Computations.” International Journal of Multidisciplinary

Research and Publications (IJMRAP), VOl. 3 no.1, pp. 30-37. 2020.

[8] S. R. M. Zeebaree, H. M. Shukur, L. M. Haji, R. R. Zebari, K. Jacksi,

and S. M.Abas, “Characteristics and Analysis of Hadoop Distributed

Systems,” Technology Reports of Kansai University, vol. 62, no. 4, pp.

1555–1564, Apr. 2020.

[9] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, “Sync or async: Time

to fuse for distributed graph-parallel computation,” ACM SIGPLAN

Notices, vol. 50, no. 8, pp. 194–204, 2015.

[10] M. Abadi et al., “Tensorflow: A system for large-scale machine

learning,” in 12th ${$USENIX$}$ symposium on operating systems

design and implementation (${$OSDI$}$ 16), 2016, pp. 265–283.

[11] J. Dean et al., “Large scale distributed deep networks,” Advances in

neural information processing systems, vol. 25, pp. 1223–1231, 2012.

[12] K. B. Obaid, S. R. Zeebaree, and O. M. Ahmed, “Deep Learning Models

Based on Image Classification: A Review,” International Journal of

Science and Business, vol. 4, no. 11, pp. 75–81, 2020.

[13] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning,

vol. 1. MIT press Cambridge, 2016.

[14] M. R. Mahmood, M. B. Abdulrazzaq, S. R. Zeebaree, A. K. Ibrahim, R.
R. Zebari, and H. I. Dino, “Classification techniques’ performance

evaluation for facial expression recognition.” Indonesian Journal of

Electrical Engineering and Computer Science, vol. 21 no.2,

pp.176~1184. 2021.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[16] R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A

Comprehensive Review of Dimensionality Reduction Techniques for

Feature Selection and Feature Extraction,” Journal of Applied Science

and Technology Trends, vol. 1, no. 2, Art. no. 2, May 2020, doi:

10.38094/jastt1224.

[17] G. Malewicz et al., “Pregel: a system for large-scale graph processing,”

in Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data, 2010, pp. 135–146.

[18] H. Dino et al., “Facial Expression Recognition based on Hybrid Feature

Extraction Techniques with Different Classifiers,” TEST Engineering &

Management, vol. 83, pp. 22319–22329, 2020.

[19] S. R. Zeebaree, A. B. Sallow, B. K. Hussan, and S. M. Ali, “Design and

Simulation of High-Speed Parallel/Sequential Simplified DES Code

Breaking Based on FPGA,” in 2019 International Conference on

Advanced Science and Engineering (ICOASE), 2019, pp. 76–81.

[20] Z. N. Rashid, S. R. Zeebaree, and A. Shengul, “Design and Analysis of

Proposed Remote Controlling Distributed Parallel Computing System

Over the Cloud,” in 2019 International Conference on Advanced Science

and Engineering (ICOASE), 2019, pp. 118–123.

[21] G. D’Angelo and M. Marzolla, “New trends in parallel and distributed

simulation: From many-cores to cloud computing,” Simulation

Modelling Practice and Theory, vol. 49, pp. 320–335, 2014.

[22] P. Y. Abdullah, S. R. M. Zeebaree, H. M. Shukur, and K. Jacksi, “HRM

System using Cloud Computing for Small and Medium Enterprises

(SMEs),” Technology Reports of Kansai University, vol. 62, no. 04, Art.

no. 04, Apr. 2020.

[23] A. M. Law, W. D. Kelton, and W. D. Kelton, Simulation modeling and

analysis, vol. 3. McGraw-Hill New York, 2000.

[24] M. F. Richard, “Parallel and Distribution Simulation Systems,” 1999.
[25] R. Tyagi and S. K. Gupta, “A survey on scheduling algorithms for

parallel and distributed systems,” in Silicon Photonics & High

Performance Computing, Springer, 2018, pp. 51–64.

[26] S. J. Kim, “A general approach to mapping of parallel computations

upon multiprocessor architectures,” in Proc. International Conference on

Parallel Processing, 1988, vol. 3.

[27] Y. Xu, K. Li, L. He, and T. K. Truong, “A DAG scheduling scheme on

heterogeneous computing systems using double molecular structure-

based chemical reaction optimization,” Journal of Parallel and

Distributed Computing, vol. 73, no. 9, pp. 1306–1322, 2013.

[28] Z. Tong, Z. Xiao, K. Li, and K. Li, “Proactive scheduling in distributed

computing—A reinforcement learning approach,” Journal of Parallel

and Distributed Computing, vol. 74, no. 7, pp. 2662–2672, 2014.

[29] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale

hypertextual web search engine,” Computer networks, vol. 56, no. 18,

pp. 3825–3833, 2012.

[30] J. E. Gonzalez, Y. Low, C. E. Guestrin, and D. O’Hallaron, “Distributed

parallel inference on large factor graphs,” arXiv preprint

arXiv:1205.2645, 2012.

[31] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin, “Parallel gibbs

sampling: From colored fields to thin junction trees,” in Proceedings of

the Fourteenth International Conference on Artificial Intelligence and

Statistics, 2011, pp. 324–332.

[32] S. J. Chapin, “Distributed and multiprocessor scheduling,” ACM

Computing Surveys (CSUR), vol. 28, no. 1, pp. 233–235, 1996.

[33] Y. S. Jghef and S. R. Zeebaree, “State of Art Survey for Significant

Relations between Cloud Computing and Distributed Computing,”

International Journal of Science and Business, vol. 4, no. 12, pp. 53–61,

2020.

[34] B. Shirazi, A. Hurson, and K. Kavi, “Introduction to scheduling and load

balancing,” IEEE Computer Society, 1995.

[35] L. Lamport, “Time, clocks, and the ordering of events in a distributed

system,” in Concurrency: the Works of Leslie Lamport, 2019, pp. 179–

196.

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:56

[36] H. Nakada et al., “Design and implementation of a local scheduling

system with advance reservation for co-allocation on the grid,” in The

Sixth IEEE International Conference on Computer and Information

Technology (CIT’06), 2006, pp. 65–65.

[37] Y. Li, Y. Liu, L. Li, and P. Luo, “Local scheduling scheme for

opportunistic routing,” in 2009 IEEE Wireless Communications and

Networking Conference, 2009, pp. 1–6.

[38] J. Regehr, “Some guidelines for proportional share CPU scheduling in

general-purpose operating systems,” 2001.

[39] C. A. Waldspurger and E. Weihl W, “Stride scheduling: deterministic

proportional-share resource management,” 1995.

[40] R. Koshy, “Scheduling in distributed system: a survey and future

perspective,” Int J Adv Technol Eng Sci, 2014.

[41] A. Gupta, A. Tucker, and S. Urushibara, “The impact of operating

system scheduling policies and synchronization methods of performance

of parallel applications,” in Proceedings of the 1991 ACM

SIGMETRICS conference on Measurement and modeling of computer

systems, 1991, pp. 120–132.

[42] E. Frachtenberg, G. Feitelson, F. Petrini, and J. Fernandez, “Adaptive

parallel job scheduling with flexible coscheduling,” IEEE Transactions

on Parallel and Distributed systems, vol. 16, no. 11, pp. 1066–1077,

2005.

[43] G. S. Choi, "Co-ordinated coscheduling in time-sharing clusters through a

generic framework," in Cluster Computing, 2003. Proceedings. 2003

IEEE International Conference on, 2003, pp. 84-91.

[44] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, "Improving

parallel job scheduling by combining gang scheduling and backfilling

techniques," in Parallel and Distributed Processing Symposium, 2000.

IPDPS 2000. Proceedings. 14th International, 2000, pp. 133-142.

[45] P. G. Sobalvarro, S. Pakin, W. E. Weihl, and A. A. Chien, "Dynamic

coscheduling on workstation clusters," in Workshop on Job Scheduling

Strategies for Parallel Processing, 1998, pp. 231-256.

[46] G. D'Angelo and M. Bracuto, "Distributed simulation of large-scale and

detailed models," International Journal of Simulation and Process

Modelling, vol. 5, pp. 120-131, 2009

[47] Z. Mohtajollah and F. Adibnia, “A Novel Parallel Jobs Scheduling

Algorithm in The Cloud Computing,” in 2019 9th International

Conference on Computer and Knowledge Engineering (ICCKE), 2019,

pp. 243–248.

[48] M. Xu, C. Q. Wu, A. Hou, and Y. Wang, “Intelligent scheduling for

parallel jobs in big data processing systems,” in 2019 International

Conference on Computing, Networking and Communications (ICNC),

2019, pp. 22–28.

[49] V. A. Lepakshi and C. S. R. Prashanth, “Efficient Resource Allocation

with Score for Reliable Task Scheduling in Cloud Computing Systems,”

in 2020 2nd International Conference on Innovative Mechanisms for

Industry Applications (ICIMIA), 2020, pp. 6–12.

Lotus International | ISSN:1124-9064 https://lotusinternational.ac/

Volume 25 Issue 1 (2025) Page No:57

